

Marcos Agnoletto Forte

Uma versão estereológica da fórmula de Gauss-Bonnet

Santo André, 2022

Universidade Federal do ABC

Centro de Matemática, Computação e Cognição

Marcos Agnoletto Forte

Uma versão estereológica da fórmula de Gauss-Bonnet

Orientador: Prof. Dr. Márcio Fabiano da Silva

Santo André, 2022

$\mathrm{R} \to \mathrm{S} \cup \mathrm{M} \, \mathrm{O}$

Baseados no artigo "A stereological version of the Gauss-Bonnet formula", de Ximo Gual-Arnau e Juan J. Nuño-Ballesteros [GANBo1], estudamos uma versão estereológica da fórmula de Gauss-Bonnet, com a qual obtivemos uma maneira de calcular a característica de Euler de um domínio com fronteira em uma superfície suave e orientável em \mathbb{R}^3 a partir de seções bidimensionais desta superfície. Para isso, demos um significado geométrico para certos pontos de contato entre a superfície e um plano que a "varre". Além disso, discutimos algumas aplicações estereológicas desta fórmula.

Palavras-chave: Geometria integral, estereologia, fórmula de Gauss-Bonnet, geometria diferencial.

A B S T R A C T

Based on the article "A stereological version of the Gauss-Bonnet formula", by Ximo Gual-Arnau e Juan J. Nuño-Ballesteros [GANBo1], we have studied a stereological version of the Gauss-Bonnet formula, with which we have obtained a way to calculate the Euler characteristic of a domain with boundary on a smooth and orientable surface in \mathbb{R}^3 through two-dimensional sections of this surface. To do that, we have given a geometric meaning to certain contact points between the surface and a plane which "sweeps" it. In addition, we have discussed some stereological applications of this formula.

Keywords: Integral geometry, stereology, Gauss-Bonnet formula, differential geometry.

CONTEÚDO

1	Introdução	1
2	Preliminares	3
	2.1 Definições básicas	3
	2.2 Curvaturas	7
	2.3 Geodésicas	17
	2.4 O Teorema de Gauss-Bonnet e o Teorema de Poincaré-Hopf	21
3	A fórmula de Gauss-Bonnet estereológica	29
	3.1 Aplicações	42
Bibliografia		45

1 INTRODUÇÃO

Grosso modo, um estudo estereológico de uma superfície *S* em \mathbb{R}^3 consiste em obter informações geométricas, como a curvatura, a característica de Euler-Poincaré ou a área, através de suas seções bidimensionais. Para isso, fixado $u \in \mathbb{S}^2$, consideramos uma *função altura* $h_u : \mathbb{R}^3 \to \mathbb{R}$ dada por $h_u(p) = \langle p, u \rangle$, de modo que quando variamos um parâmetro $\lambda \in \mathbb{R}$ obtemos diferentes planos $\pi_{u,\lambda} = h_u^{-1}(\lambda)$ que "varrem" a superfície *S*. Assim, a partir das seções $\pi_{u,\lambda} \cap S$, obtemos as informações geométricas desejadas.

Como exemplo, o Princípio de Cavalieri é um estudo estereológico no qual a informação geométrica a ser determinada é o volume de um sólido, isto é, de um subconjunto limitado de \mathbb{R}^3 cuja fronteira é uma superfície. Uma versão clássica deste princípio é a seguinte: "Consideremos dois sólidos e o plano que contém suas bases. Se todo plano paralelo ao plano das bases que intersectar um dos sólidos também intersectar o outro determinando seções de mesma área, como ilustra a Figura 1, então os volumes dos sólidos são iguais."

Figura 1: O Princípio de Cavalieri.

Outro estudo estereológico é o famoso problema da agulha de Buffon. Ehrhard Behrends e Jorge Buescu o apresentam da seguinte maneira em [BB14]: "Georges-Louis Leclerc, Conde de Buffon (1707–1788), é famoso pela seguinte 'experiência': suponhamos que estamos numa sala cujo chão é constituído por tábuas paralelas. Designemos a distância entre as tábuas por *a*. Tomemos uma agulha, ou um objeto semelhante, de comprimento 2.*r* menor do que *a*. Esta condição assegura que, se deixarmos cair a agulha no chão, ela atravessará quando muito uma linha que divide duas tábuas diferentes. A probabilidade de que esse acontecimento ocorra (isto é, que a agulha, ao cair no chão, não fique totalmente contida no interior de uma única tábua) é então $P = \frac{4.r}{\pi.a}$. Esta fórmula contém a constante π – proporcionando-nos, portanto, a possibilidade de calcular esta constante por via 'experimental'.". A Figura 2 ilustra o problema da agulha de Buffon.

Figura 2: O problema de Buffon.

Como a estereologia é uma ciência aplicada que engloba um estudo interdisciplinar, o desenvolvimento de ferramentas matemáticas, como uma maneira estereológica de obtermos a característica de Euler-Poincaré de uma superfície, é fundamental para o desenvolvimento da área. Podemos ver isso pelas diversas aplicações da característica de Euler-Poincaré na estereologia: [DeH87], [ONo8], [RdSB09], [GBNO93].

Este trabalho de conclusão de curso está organizado da seguinte maneira: No Capítulo 2, recordamos algumas definições importantes da geometria diferencial e fixamos notação. Além disso, revisamos um conjunto de fatos sobre as curvaturas de superfícies. Por fim, apresentamos uma demonstração para o Teorema de Gauss-Bonnet 2.76 e o Teorema de Poincaré-Hopf 2.84.

No Capítulo 3, estudamos as ferramentas necessárias para provarmos a versão estereológica da fórmula de Gauss-Bonnet 3.13. Além disso, apresentamos algumas aplicações para esta fórmula desenvolvida.

2 | PRELIMINARES

2.1 DEFINIÇÕES BÁSICAS

Nesta seção apresentaremos algumas definições básicas da geometria diferencial e fixaremos notação. As superfícies em \mathbb{R}^3 são o objeto de estudo dos resultados obtidos por Ximo Gual-Arnau e Juan J. Nuño-Ballesteros no artigo "A stereological version of the Gauss-Bonnet Formula" [GANB01]. Assim, a seguir definiremos superfícies.

Definição 2.1. *Um subconjunto conexo* $S \subset \mathbb{R}^3$ *é uma* **superfície regular** (*ou* **mergulhada**) se para todo ponto $p \in S$ existe uma aplicação $\phi : U \to \mathbb{R}^3$ de classe C^{∞} , onde $U \subset \mathbb{R}^2$ *é um subconjunto aberto de* \mathbb{R}^2 , *tal que:*

- 1. $\phi(U) \subset S$ é uma vizinhança aberta de p em S (ou, equivalentemente, existe uma vizinhança aberta de $W \subset \mathbb{R}^3$ de p em \mathbb{R}^3 tal que $\phi(U) = W \cap S$);
- 2. φ é um homeomorfismo sobre sua imagem;
- 3. A diferencial $d\phi_x : \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva para todo $x \in U$.

No contexto da Definição 2.1 chamaremos qualquer aplicação ϕ que satisfaz os itens (1) - (3) de *parametrização local* (ou *regular*) em *p*; se $0 \in U$ e $\phi(0) = p$ diremos que tal parametrização local é *centrada* em *p*. Chamaremos a aplicação inversa $\phi^{-1} : \phi(U) \to U$ de *carta local* em *p*; a vizinhança $\phi(U)$ de *p* em *S* é chamada de *vizinhança coordenada*, as aplicações coordenadas $(x_1(p), x_2(p)) = \phi^{-1}(p)$ são chamadas de *coordenadas locais* de *p*; e, para *j* = 1, 2, a curva $t \mapsto \phi(x_0 + te_j)$ é chamada de *j-ésima curva coordenada* ao longo de $\phi(x_0)$.

Definição 2.2. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Chamamos de **atlas** a família $\mathcal{A} = \{\phi_{\alpha}\}$ de parametrizações locais $\phi_{\alpha} : U_{\alpha} \to S$ em p, para todo $p \in S$, tais que $S = \bigcup_{\alpha} \phi_{\alpha}(U_{\alpha})$.

A seguir daremos um procedimento para construir superfícies regulares a partir da imagem inversa de valores regulares. Comecemos com uma definição:

Definição 2.3. Sejam $V \subset \mathbb{R}^3$ um conjunto aberto $e f : V \to \mathbb{R}$ uma função de classe C^{∞} . Dizemos que $p \in V$ é um **ponto crítico** de f se $df_p : \mathbb{R}^3 \to \mathbb{R}$ não é sobrejetiva. Denotaremos o conjunto dos pontos críticos de f por Crit(f) e os pontos de V que não são pontos críticos chamaremos de **pontos regulares** de f. Se $p \in V$ é um ponto crítico de f, então chamamos $f(p) \in \mathbb{R}$ de **valor crítico**. Um ponto $y \in f(V) \subset \mathbb{R}$ que não é um valor crítico é um **valor regular**. Além disso, diremos que um ponto crítico $p \in V$ de f é **não-degenerado** se a hessiana de f em p é uma forma bilinear não-degenerada; caso contrário, ele é dito **degenerado**.

Observação 2.4. Sejam $f : V \to \mathbb{R}$ é uma função de classe C^{∞} definida em um conjunto aberto $V \subset \mathbb{R}^3$ e $p \in V$. Então $df_p : \mathbb{R}^3 \to \mathbb{R}$ não é sobrejetiva se, e somente se, ela é identicamente nula. Em outras palavras, $p \in V$ é um ponto crítico de f se, e somente se, o gradiente de f é zero em p.

Proposição 2.5. Seja $V \subset \mathbb{R}^3$ um conjunto aberto $e f : V \to \mathbb{R}$ uma função de classe C^{∞} . Se $a \in \mathbb{R}$ é um valor regular de f então toda componente conexa do conjunto de nível $f^{-1}(a) = \{p \in V : f(p) = a\}$ é uma superfície regular.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 3.1.25, p. 128].

Definição 2.6. Sejam $V \subset \mathbb{R}^3$ um conjunto aberto, $f : V \to \mathbb{R}$ uma função de classe C^{∞} e $a \in \mathbb{R}$ um valor regular de f. Uma componente conexa de $f^{-1}(a)$ é chamada de **superfície de** nível de f.

A seguir veremos que toda superfície regular é localmente o gráfico de uma função.

Proposição 2.7. Consideremos $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$ um ponto. Então existe uma parametrização local $\phi : U \to S$ em p de uma das seguintes formas:

$$\phi(x,y) = \begin{cases} (x,y,f(x,y)), & ou\\ (x,f(x,y),y), & ou\\ (f(x,y),x,y), \end{cases}$$

para uma certa função $f: U \to \mathbb{R}$ de classe \mathcal{C}^{∞} .

Demonstração. A demonstração pode ser vista em [AT12, Proposição 3.1.29, p. 130].

Definição 2.8. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$ um ponto arbitrário. Uma função $f: S \to \mathbb{R}$ é de classe C^{∞} (ou suave) em p se existe uma parametrização local $\phi: U \to S$ em p tal que $f \circ \phi: U \to \mathbb{R}$ é de classe C^{∞} em uma vizinhança de $\phi^{-1}(p)$. Diremos que f é de classe C^{∞} (ou suave) se ela for suave em todo ponto de S.

Um possível problema com a Definição 2.8 é que ela pode depender da parametrização escolhida, isto é, pode existir uma outra parametrização ψ em p tal que $f \circ \psi$ não é suave em $\psi^{-1}(p)$. Entretanto, veremos a seguir que este não é o caso e a Definição 2.8 não depende da escolha de parametrização.

Teorema 2.9. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $\phi : U \to S \ e \ \psi : V \to S$ duas parametrizações com $\Omega = \phi(U) \cap \psi(V) \neq \emptyset$. Então a aplicação $\eta = (\phi^{-1} \circ \psi)|_{\psi^{-1}(\Omega)} : \psi^{-1}(\Omega) \to \phi^{-1}(\Omega)$ é um difeomorfismo.

Demonstração. A demonstração pode ser vista em [dC14, Proposição 1, p. 82].

Corolário 2.10. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $f : S \to \mathbb{R}$ uma função em $S e p \in S$ um ponto arbitrário. Se existe uma parametrização $\phi : U \to S$ em p tal que $f \circ \phi$ é de classe C^{∞} em uma vizinhança de $\phi^{-1}(p)$ então $f \circ \psi$ é de classe C^{∞} em uma vizinhança de $\psi^{-1}(p)$ para todas as parametrizações $\psi : V \to S$ de S em p.

Demonstração. Notemos que podemos escrever $f \circ \psi = (f \circ \phi) \circ (\phi^{-1} \circ \psi)$. Então pelo Teorema 2.9 temos que $f \circ \psi$ é de classe C^{∞} em uma vizinhança de $\psi^{-1}(p)$ se, e somente se, $f \circ \phi$ é de classe C^{∞} em uma vizinhança de $\phi^{-1}(p)$.

Usando a mesma ideia da Definição 2.8, definiremos funções suaves entre superfícies.

Definição 2.11. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares. Diremos que a aplicação $f : S_1 \to S_2$ é de classe C^{∞} (ou suave) em $p \in S_1$ se existe uma parametrização local $\phi_1 : U_1 \to S_1$ em p e uma parametrização local $\phi_2 : U_2 \to S_2$ em f(p) tal que $\phi_2^{-1} \circ f \circ \phi_1$ é de classe C^{∞} em uma vizinhança de $\phi_1^{-1}(p)$. Diremos que f é de classe C^{∞} (ou suave) de ela for suave em todo ponto de S_1 . Se f é de classe C^{∞} e inversível com inversa de classe C^{∞} diremos que f é um **difeomorfismo** e que S_1 e S_2 são **difeomorfas**.

Definiremos, agora, a noção de um vetor tangente a uma superfície regular em um ponto.

Definição 2.12. Sejam $S \subset \mathbb{R}^3$ uma superfície regular $e \ p \in S$ um ponto arbitrário. Um vetor tangente a $S \ em \ p \ e$ um vetor da forma $\alpha'(0)$, onde $\alpha :] - \varepsilon, \varepsilon [\rightarrow \mathbb{R}^3 \ e$ uma curva de classe C^{∞} cujo traço está contido em $S \ e$ tal que $\alpha(0) = p$. O conjunto de todos os vetores tangentes a $S \ em$ $p \ e$ um espaço vetorial chamado de **plano tangente** a $S \ em \ p$, que será denotado por T_pS .

Consideremos $S \subset \mathbb{R}^3$ uma superfície regular, $p \in S$ um ponto arbitrário e $\phi : U \to S$ uma parametrização local de $p \operatorname{com} \phi(x_0) = p$. Então $d\phi_{x_0}$ é um isomorfismo entre \mathbb{R}^2 e T_pS que nos permite considerar uma base especial para o plano tangente:

Definição 2.13. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$ um ponto arbitrário. Consideremos $\phi: U \to S$ uma parametrização local centrada em p e $\{e_1, e_2\}$ a base canônica de \mathbb{R}^2 . Definimos os vetores tangentes a S em p $\left.\frac{\partial}{\partial x_1}\right|_n, \left.\frac{\partial}{\partial x_2}\right|_n \in T_p S$ por

$$\frac{\partial}{\partial x_j}\Big|_p = d\phi_0(e_j) = \frac{\partial \phi}{\partial x_j}(0) = \begin{pmatrix} \frac{\partial \phi_1}{\partial x_j}(0) \\ \frac{\partial \phi_2}{\partial x_j}(0) \\ \frac{\partial \phi_3}{\partial x_j}(0) \end{pmatrix}, \quad j = 1, 2.$$

A base $\left\{ \frac{\partial}{\partial x_1} \Big|_p, \frac{\partial}{\partial x_2} \Big|_p \right\}$ de $T_p S$ será chamada de base induzida pela parametrização

local ϕ .

Vimos na Proposição 2.5 que é possível definirmos superfícies como conjuntos de nível de uma função suave. A próxima proposição nos mostrará como encontrar o plano tangente neste caso particular.

Proposição 2.14. Sejam $U \subset \mathbb{R}^3$ um conjunto aberto, $f : U \to \mathbb{R}$ uma função de classe \mathcal{C}^{∞} , $a \in \mathbb{R}$ um valor regular de f, S uma componente conexa de $f^{-1}(a)$ e $p \in S$ um ponto arbitrário. Então o plano tangente $T_v S$ é o subespaço de \mathbb{R}^3 ortogonal a grad(f)(p).

Demonstração. Consideremos $v = (v_1, v_2, v_3) \in T_p S$ um vetor arbitrário e seja $\alpha :] - \varepsilon, \varepsilon [\rightarrow$ *S* uma curva tal que $\alpha(0) = p e \alpha'(0) = v$. Primeiramente notemos que $f \circ \alpha = a$, donde obtemos que

$$\frac{\partial f}{\partial x_1}(p)v_1 + \frac{\partial f}{\partial x_2}(p)v_2 + \frac{\partial f}{\partial x_3}(p)v_3 = 0.$$

Portanto v é ortogonal a grad(f)(p). Como v foi tomado arbitrário temos que $T_v S$ está contido no subespaço ortogonal a grad(f)(p). Como ambos os espaços têm dimensão 2, então o plano tangente T_pS é o subespaço de \mathbb{R}^3 ortogonal a grad(f)(p).

Munidos da noção de plano tangente, introduziremos a noção de diferencial de uma aplicação suave entre superfícies.

Proposição 2.15. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares $e f : V \subset S_1 \to S_2$ uma aplicação suave de um conjunto aberto $V \subset S_1$. Consideremos $p \in V$ um ponto $e v \in T_pS_1$ um vetor arbitrários tais que $\alpha(0) = p e \alpha'(0) = v$ onde $\alpha :] - \varepsilon, \varepsilon [\to V \acute{e}$ uma curva parametrizada diferenciável. Então a curva $\beta = f \circ \alpha \acute{e}$ tal que $\beta(0) = f(p) e \beta'(0) \acute{e}$ um vetor de $T_{f(p)}S_2$ que não depende da escolha de α . Além disso, a aplicação $df_p : T_pS_1 \to T_{f(p)}S_2$ definida por $df_p(v) = \beta'(0) \acute{e}$ linear.

Demonstração. A demonstração pode ser vista em [dC14, Proposição 2, p. 100].

Definição 2.16. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares, $f : V \subset S_1 \to S_2$ uma aplicação suave de um conjunto aberto $V \subset S_1$ e $p \in V$ um ponto arbitrário. Chamamos a aplicação linear df_p , dada pela Proposição 2.15, de **diferencial** de f em p.

2.2 CURVATURAS

Até agora, tratamos as superfícies sob o ponto de vista da diferenciabilidade. Nesta seção, começaremos o estudo de outras estruturas geométricas associadas a uma superfície regular.

Definição 2.17. Sejam $S \subset \mathbb{R}^3$ uma superfície regular $e \ p \in S$ um ponto arbitrário. Denotaremos por $\langle \cdot, \cdot \rangle_p$ o produto escalar positivo definido em T_pS induzido pelo produto escalar canônico de \mathbb{R}^3 . A **primeira forma fundamental** $I_p : T_pS \to \mathbb{R}$ é a forma quadrática (positiva definida) associada ao produto escalar, isto é, para todo $v \in T_pS$ temos que

$$I_p(v) = \langle v, v \rangle_p \ge 0.$$

Consideremos $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$ um ponto arbitrário. A seguir, expressaremos a primeira forma fundamental na base $\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right\}$ associada a uma parametrização local $\phi : U \to S$ em p.

Se tomarmos dois vetores tangentes $v, w \in T_p S$ e os escrevermos como combinação linear dos vetores da base, isto é, $v = v_1 \frac{\partial}{\partial x_1} + v_2 \frac{\partial}{\partial x_2}$ e $w = w_1 \frac{\partial}{\partial x_1} + w_2 \frac{\partial}{\partial x_2}$, então

$$\left\langle v,w\right\rangle_{p} = v_{1}w_{1}\left\langle \frac{\partial}{\partial x_{1}},\frac{\partial}{\partial x_{1}}\right\rangle_{p} + \left(v_{1}w_{2} + v_{2}w_{1}\right)\left\langle \frac{\partial}{\partial x_{1}},\frac{\partial}{\partial x_{2}}\right\rangle_{p} + v_{2}w_{2}\left\langle \frac{\partial}{\partial x_{2}}\frac{\partial}{\partial x_{2}}\right\rangle_{p}$$

Em particular,

$$I_{p}(v) = \langle v, v \rangle_{p} = v_{1}^{2} \left\langle \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{1}} \right\rangle_{p} + 2v_{1}v_{2} \left\langle \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}} \right\rangle_{p} + v_{2}^{2} \left\langle \frac{\partial}{\partial x_{2}} \frac{\partial}{\partial x_{2}} \right\rangle_{p}.$$
(1)

Definição 2.18. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $\phi : U \to S$ uma parametrização local. Então definimos os **coeficientes da primeira forma fundamental** (ou **métrica**) de S com respeito a ϕ como as funções $E, F, G : U \to \mathbb{R}$ dadas por

$$E(x) = \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_1} \right\rangle_{\phi(x)}, \quad F(x) = \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \right\rangle_{\phi(x)}, \quad G(x) = \left\langle \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_2} \right\rangle_{\phi(x)},$$

para todo $x \in U$.

Observação 2.19. Notamos que os coeficientes da primeira forma fundamental de uma superfície regular são funções de classe C^{∞} e que, embora eles dependam da escolha de parametrização local, a primeira forma fundamental de S, dada por (1), independe de parametrização.

As aplicações entre superfícies regulares que preservam a primeira forma fundamental e, portanto, a métrica, são chamadas de isometrias, enquanto que aquelas que preservam ângulo são chamadas de conformes. É o que definimos a seguir.

Definição 2.20. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares $e f : S_1 \to S_2$ uma aplicação de classe C^{∞} . Dizemos que f é uma **isometria em** $p \in S_1$ se para todo $v \in T_pS_1$ tivermos que

$$I_{f(p)}(df_p(v)) = I_p(v).$$

Nas condições da Definição 2.20, se $f: S_1 \to S_2$ é uma isometria então temos também que para todo $v, w \in T_pS_1$

$$\begin{split} \langle v, w \rangle_p &= \frac{I_p(v+w) - I_p(v) - I_p(w)}{2} \\ &= \frac{I_{f(p)}(df_p(v+w)) - I_{f(p)}(df_p(v)) - I_{f(p)}(df_p(w))}{2} \\ &= \left\langle df_p(v), df_p(w) \right\rangle_{f(p)}. \end{split}$$

Além disso, dizemos que f é uma *isometria local em* $p \in S_1$ se p possuir uma vizinhança U tal que f é uma isometria em cada ponto de U; e que f é uma *isometria local* se ela é uma isometria em cada ponto de S_1 . Por fim, dizemos que f é uma *isometria* se ela for um difeomorfismo global e uma isometria local.

Definição 2.21. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares. Dizemos que S_1 é **localmente isométrica** a S_2 e para todo $p \in S_1$ existe uma isometria de uma vizinhança de p em S_1 com um conjunto aberto em S_2 .

Definição 2.22. Sejam $S_1, S_2 \subset \mathbb{R}^3$ duas superfícies regulares $e f : S_1 \to S_2$ uma aplicação de classe C^{∞} . Dizemos que f é uma **aplicação conforme** se para todo $p \in S_1$ e quaisquer $v \in T_pS_1$ temos

$$I_{f(p)}(df_p(v)) = \lambda^2(p)I_p(v),$$

onde λ^2 é uma função diferenciável em S_1 que nunca se anula. As superfícies S_1 e S_2 são chamadas **conformes**.

Nas condições da Definição 2.22, se $f : S_1 \rightarrow S_2$ é uma aplicação conforme então temos também que para todo $v, w \in T_pS_1$

$$\langle df_p(v), df_p(w) \rangle_{f(p)} = \lambda^2(p) \langle v, w \rangle.$$

Definição 2.23. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$ um ponto. A **determinação do ângulo** entre dois vetores tangentes $v, w \in T_pS$ é um número $\theta \in \mathbb{R}$ tal que

$$\cos\theta = \frac{\langle v, w \rangle_p}{\sqrt{I_p(v)I_p(w)}}.$$

Além disso, se α, β :] $-\varepsilon, \varepsilon$ [\rightarrow S são curvas diferenciáveis com $\alpha(0) = \beta(0) = p$, nós dizemos que o **ângulo entre** α **e** β **em** p é a determinação do ângulo entre $\alpha'(0)$ e $\beta'(0)$.

Definição 2.24. *Dizemos que uma parametrização local* ϕ *de uma superfície regular S é* **ortogonal** *se suas curvas coordenadas formam um ângulo reto.*

Sendo *U* uma vizinhança coordenadas de *p*, a parametrização ϕ é ortogonal se F(x) = 0, para todo $x \in U$.

Uma outra questão métrica que pode ser tratada com a primeira forma fundamental é o cálculo da área de uma região limitada de uma superfície regular *S*. Para isto, definiremos estas regiões cuja área queremos medir.

Definição 2.25. Sejam α : $[a,b] \rightarrow S$ uma curva regular por partes parametrizada por comprimento de arco em uma superfície regular $S \subset \mathbb{R}^3$ e $a = t_0 < t_1 < \cdots < t_k = b$ uma partição de [a,b] tal que $\alpha|_{[t_{j-1},t_j]}$ é regular para $j = 1, \ldots, k$. Definimos

$$\alpha'(t_j^-) = \lim_{t \to t_j^-} \alpha'(t)$$
 e $\alpha'(t_j^+) = \lim_{t \to t_j^+} \alpha'(t);$

 $\alpha'(t_j^-) e \alpha'(t_j^+) s$ ão (em geral) vetores distintos em $T_{\alpha(t_j)}S$. Notemos que $\alpha'(t_0^-) e \alpha'(t_k^+) s$ ó estão definidos para curvas fechadas e, neste caso, definimos $\alpha'(t_0^-) = \alpha'(t_k^-) e \alpha'(t_k^+) = \alpha'(t_0^+)$. Diremos que $\alpha(t_j)$ é um vértice de α se $\alpha'(t_j^-) \neq \alpha'(t_j^+) e$ uma cúspide se $\alpha'(t_j^-) = -\alpha'(t_j^+)$. Um polígono curvilíneo em S é uma curva simples, regular por partes, parametrizada pelo comprimento de arco e sem cúspides.

Definição 2.26. Sejam S uma superfície regular e $R \subset S$ um subconjunto conexo. Dizemos que R é uma **região regular** se R é compacto e sua fronteira ∂R é uma união finita de polígonos curvilíneos que não se intersectam.

No caso em que $S \subset \mathbb{R}^3$ é uma superfície regular compacta, temos que S é uma região regular com fronteira vazia.

Definição 2.27. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $\phi : U \to S$ uma parametrização local e $R \subset S$ uma região regular de S tal que $\phi^{-1}(R) \subset U$. Chamamos o número positivo

$$A(R) = \iint_{\phi^{-1}(R)} \left| \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} \right| dx dy$$

de **área de** R.

Observação 2.28. Notemos que a área de uma região regular não depende da parametrização escolhida.

Definição 2.29. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Dizemos que S é **orientável** se ela admite uma cobertura por vizinhanças coordenadas $\phi_{\alpha}(U_{\alpha})$, em que $\phi_{\alpha} : U_{\alpha} \to S$, de tal modo que se $p \in \phi_{\alpha_1}(U_{\alpha_1}) \cap \phi_{\alpha_2}(U_{\alpha_2})$, com $(x_1, y_1) \in U_{\alpha_1}$ e $(x_2, y_2) \in U_{\alpha_2}$ então $\frac{\partial(x_1, y_1)}{\partial(x_2, y_2)}(p) > 0$. A escolha de uma tal família de vizinhanças coordenadas que cobrem S é denominada uma **orientação** de S, e S, neste caso, diz-se orientada. Se uma tal escolha não é possível, diz-se que S é **não-orientável**. Se S é orientada, uma parametrização local $\phi : U \to S$ é dita **compatível** com a orientação de S se, unindo ϕ à família de parametrizações dada pela orientação, obtém-se ainda uma (logo, a mesma) orientação.

Definição 2.30. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Um campo vetorial normal a S é a aplicação $N : S \to \mathbb{R}^3$ de classe C^{∞} tal que N(p) é ortogonal a T_pS para todo $p \in S$. Se, além disso, |N| = 1 dizemos que N é um campo normal unitário a S.

A seguir, observamos a relação entre a orientabilidade de uma superfície e um campo normal unitário a ela.

Proposição 2.31. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Então temos que S é orientável se, e somente se, existe um campo normal unitário em S.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 4.3.7, p. 180].

Definição 2.32. Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada por um atlas \mathcal{A} . Um campo normal unitário N **determina uma orientação** se $N = \frac{\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}{\left|\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}\right|}$ para qualquer parame-

trização local de A.

Definição 2.33. Sejam $S \subset \mathbb{R}^3$ uma superfície regular orientada e $N : S \to S^2$ um campo normal unitário que determina uma orientação. Para $p \in S$ dizemos que uma base $\{v_1, v_2\}$ de T_pS é **positiva** (resp., **negativa**) se a base $\{v_1, v_2, N(p)\}$ de \mathbb{R}^3 tem a mesma orientação (resp., a orientação oposta) da base canônica de \mathbb{R}^3 .

Corolário 2.34. Sejam $\Omega \subset \mathbb{R}^3$ um conjunto aberto, $f : \Omega \to \mathbb{R}$ uma função de classe \mathcal{C}^{∞} e $a \in \mathbb{R}$ um valor regular de f. Então toda componente conexa S de $f^{-1}(a)$ é orientável e o campo normal unitário é dado por $N = \frac{grad(f)}{|grad(f)|}$.

Demonstração. Seja *p* ∈ *S* um ponto arbitrário. Pela Proposição 2.14 temos que o plano tangente T_pS é ortogonal a grad(f)(p). Logo, basta tomar $N(p) = \frac{grad(f)}{|grad(f)|}(p)$. Pela Proposição 2.31, temos que *S* é orientável.

Uma das preocupações da geometria diferencial é medir a curvatura de uma superfície regular *S*. Isto está fortemente relacionado à variação do campo normal unitário *N* sobre *S*, como veremos a seguir.

Lema 2.35. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $p \in S$ um ponto e N(p) um vetor unitário de \mathbb{R}^3 ortogonal a T_pS . Dado $v \in T_pS$ um vetor tal que |v| = 1, consideremos Π o plano que passa por p e é paralelo a v e N(p). Então a interseção $\Pi \cap S$ é, em uma vizinhança de p, o traço de uma curva regular.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 4.4.1, p. 184].

Definição 2.36. Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada. A **aplicação de Gauss** de S é o campo normal unitário $N : S \to \mathbb{S}^2$ que determina a mesma orientação de S.

A aplicação de Gauss determina unicamente os planos tangentes a uma superfície regular *S*, pois T_pS é ortogonal a N(p); então a variação de *N* mede o quanto os planos tangentes variam, isto é, o quanto *S* deixa de ser um plano.

Este argumento sugere que a curvatura da superfície regular pode estar relacionada com a diferencial da aplicação de Gauss, assim como a curvatura de curvas está relacionada com a derivada do vetor unitário tangente. **Proposição 2.37.** Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N: S \to \mathbb{S}^2$. Então dN_p é um endomorfismo de T_pS , simétrico com respeito ao produto escalar $\langle \cdot, \cdot \rangle_p$, para todo $p \in S$.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 4.4.15, p. 188].

Definição 2.38. Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N : S \to S^2$. A segunda forma fundamental de S é a forma quadrática $II_p : T_pS \to \mathbb{R}$ dada por

$$II_p(v) = -\left\langle dN_p(v), v \right\rangle_p,$$

para todo $v \in T_pS$.

Uma mudança de orientação em *S* faz a aplicação de Gauss mudar de sinal e, consequentemente, a segunda forma fundamental muda de sinal também. A partir da segunda forma fundamental de *S* e do Lema 2.35, definimos o conceito de curvatura normal:

Definição 2.39. Sejam $S \subset \mathbb{R}^3$ uma superfície regular orientada e $\alpha : I \to S$ uma curva em S parametrizada pelo comprimento de arco. A **curvatura normal** de α é a função $\kappa_n : I \to \mathbb{R}$ dada por

$$\kappa_n(t) = \left\langle \alpha''(t), N \circ \alpha(t) \right\rangle.$$

Em outras palavras, nas condições da Definição 2.39, a curvatura normal é o comprimento da projeção do vetor κn , onde κ é a curvatura da curva α e n é o vetor normal de α , sobre a normal à superfície em p, com um sinal dado pela orientação de S em p. A seguir, damos uma interpretação geométrica para a segunda forma fundamental de S.

Observação 2.40. Consideremos $S \subset \mathbb{R}^3$ uma superfície regular orientada $e \alpha :] - \varepsilon, \varepsilon [\to S]$ uma curva em S, parametrizada pelo comprimento de arco. Notemos que $\langle N(\alpha(s)), \alpha'(s) \rangle = 0$, $\forall s \in] - \varepsilon, \varepsilon [. Logo, segue-se que$

$$-\left\langle dN_{\alpha(s)}(\alpha'(s)), \alpha'(s) \right\rangle = \left\langle N(\alpha(s)), \alpha''(s) \right\rangle$$

Portanto,

$$II_{\alpha(s)}(\alpha'(s)) = -\left\langle dN_{\alpha(s)}(\alpha'(s)), \alpha'(s) \right\rangle = \left\langle N(\alpha(s)), \alpha''(s) \right\rangle = \kappa_n(s)$$

Teorema 2.41 (Meusnier). Sejam $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N : S \to \mathbb{S}^2$ e $p \in S$ um ponto arbitrário. Então:

- 1. Duas curvas em S passando por p e tangentes à mesma direção têm a mesma curvatura normal em p.
- 2. A curvatura normal de S em p num vetor $v \in T_pS$ tal que |v| = 1 é dada por $II_p(v)$.

Demonstração. A demonstração segue da Observação 2.40.

Como vimos na Proposição 2.37, dada uma superfície regular orientada $S \subset \mathbb{R}^3$ com aplicação de Gauss $N : S \to S^2$, sabemos que dN_p é um endomorfismo simétrico e, portanto, pelo Teorema Espectral [Lim16, Teorema 13.6, p. 160], temos que dN_p é diagonalizável, o que nos permite definir:

Definição 2.42. Sejam $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N : S \to \mathbb{S}^2$ e $p \in S$ um ponto arbitrário. Se $v \in T_pS$, com |v| = 1, e $\lambda \in \mathbb{R}$ são tais que $dN_p(v) = -\lambda v$ dizemos que v é uma direção principal de S em $p \in \lambda$ é a curvatura principal de S em p.

Assim, sendo $v \in T_pS$ uma direção principal com curvatura principal κ , temos que

$$II_{p}(v) = -\left\langle dN_{p}(v), v \right\rangle_{p} = -\left\langle -\kappa v, v \right\rangle_{p} = \kappa,$$

de modo que as curvaturas principais são curvaturas normais. Como veremos a seguir, elas são precisamente a maior e menor curvaturas normais num ponto:

Proposição 2.43. Sejam $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N: S \to \mathbb{S}^2$ e $p \in S$ um ponto arbitrário. Então existem direções principais $v_1, v_2 \in T_pS$ com correspondentes curvaturas principais $\kappa_1, \kappa_2 \in \mathbb{R}$, com $\kappa_1 \leq \kappa_2$, tais que:

- 1. $\{v_1, v_2\}$ é uma base ortonormal de T_pS ;
- 2. dado um vetor unitário $v \in T_pS$, consideremos $\theta \in]-\pi,\pi]$ a determinação do ângulo entre $v_1 e v$, logo $\cos \theta = \langle v_1, v \rangle_p e \sin \theta = \langle v_2, v \rangle_p$. Então

$$II_p(v) = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta \qquad (Fórmula \ de \ Euler);$$

3. κ_1 é a menor curvatura normal em p e κ_2 é a maior curvatura normal em p. Mais precisamente, o conjunto de todas as possíveis curvaturas normais de S em p é o intervalo $[\kappa_1, \kappa_2]$, isto é,

$$\left\{II_p(v): v \in T_pS, I_p(v) = 1\right\} = [\kappa_1, \kappa_2].$$

Demonstração. A demonstração pode ser vista em [AT12, Proposição 4.5.2, p. 191].

Definição 2.44. Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N : S \to \mathbb{S}^2$. A **curvatura Gaussiana** de S é a função $K : S \to \mathbb{R}$ dada por

$$K(p) = \det dN_p, \qquad \forall p \in S,$$

e a **curvatura média** *de S é a função H* : $S \to \mathbb{R}$ *dada por*

$$H(p) = -\frac{1}{2}\operatorname{trace} dN_p, \qquad \forall p \in S.$$

Observação 2.45. Se $\kappa_1 e \kappa_2$ são as curvaturas principais de S em p então $K(p) = \kappa_1 \kappa_2 e$ $H(p) = \frac{\kappa_1 + \kappa_2}{2}$.

Consideremos $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N: S \to \mathbb{S}^2$ e $p \in S$ um ponto arbitrário. Fixemos $\phi: U \to S$ uma parametrização local em p. Se $v = v_1 \frac{\partial}{\partial x_1} + v_2 \frac{\partial}{\partial x_2} \in T_p S$, então

$$II_{p}(v) = -\left\langle dN_{p}(v), v \right\rangle_{p} = II_{p}\left(\frac{\partial}{\partial x_{1}}\right)v_{1}^{2} - 2\left\langle dN_{p}\left(\frac{\partial}{\partial x_{1}}\right), \frac{\partial}{\partial x_{2}}\right\rangle_{p}v_{1}v_{2} + II_{p}\left(\frac{\partial}{\partial x_{2}}\right)v_{2}^{2},$$

donde temos a seguinte definição.

Definição 2.46. Sejam $S \subset \mathbb{R}^3$ uma superfície regular $e \phi : U \to S$ uma parametrização local. Definimos os **coeficientes da segunda forma fundamental** de S com respeito a ϕ como sendo as funções $e, f, g : U \to \mathbb{R}$ dadas por

$$e(x) = -\left\langle dN_{\phi(x)} \left(\frac{\partial}{\partial x_1}\right), \frac{\partial}{\partial x_1}\right\rangle_{\phi(x)} = II_{\phi(x)} \left(\frac{\partial}{\partial x_1}\right),$$

$$f(x) = -\left\langle dN_{\phi(x)} \left(\frac{\partial}{\partial x_1}\right), \frac{\partial}{\partial x_2}\right\rangle_{\phi(x)},$$

$$g(x) = -\left\langle dN_{\phi(x)} \left(\frac{\partial}{\partial x_2}\right), \frac{\partial}{\partial x_2}\right\rangle_{\phi(x)} = II_{\phi(x)} \left(\frac{\partial}{\partial x_2}\right),$$

para todo $x \in U$, onde $N = \frac{\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}{\left|\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}\right|}.$

Observação 2.47. Notemos que os coeficientes da segunda forma fundamental de uma superfície regular são funções de classe C^{∞} .

Para finalizarmos esta seção, provaremos que a curvatura Gaussiana é uma propriedade intrínseca da superfície, isto é, depende somente da primeira forma fundamental e não da maneira que a superfície está imersa no \mathbb{R}^3 .

Sejam $\phi : U \to S$ uma parametrização local da superfície regular $S \subset \mathbb{R}^3$ e N: $\phi(U) \to \mathbb{S}^2$ a aplicação de Gauss de $\phi(U)$ dada por $N = \frac{\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}{\left|\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}\right|}$. Notemos que

 $\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, N\right\}$ formam uma base para \mathbb{R}^3 em todo ponto. Em particular, existem funções $\Gamma_{ij}^k, h_{ij}, a_{ij} : U \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

$$\frac{\partial^2 \phi}{\partial x_i \partial x_j} = \Gamma^1_{ij} \frac{\partial}{\partial x_1} + \Gamma^2_{ij} \frac{\partial}{\partial x_2} + h_{ij} N, \qquad (2)$$
$$\frac{\partial (N \circ \phi)}{\partial x_j} = a_{1j} \frac{\partial}{\partial x_1} + a_{2j} \frac{\partial}{\partial x_2},$$

para i, j = 1, 2. Em (2), observamos que a componente de $\frac{\partial (N \circ \phi)}{\partial x_j}$ na direção N é nula, pois |N| = 1. Além disso, $\Gamma_{ij}^k = \Gamma_{ji}^k$ e $h_{ij} = h_{ji}$, para todos i, j, k = 1, 2.

Como $\frac{\partial(N \circ \phi)}{\partial x_i} = dN_p \left(\frac{\partial}{\partial x_i}\right)$, os termos a_{ij} são justamente as componentes da matriz que representa a transformação linear dN_p na base $\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right\}$. Segue de $\left\langle N \circ \phi, \frac{\partial}{\partial x_i} \right\rangle = 0$, para i = 1, 2, que h_{ij} são os coeficientes da segunda forma fundamental de *S*. Falta determinarmos os coeficientes Γ_{ij}^k , que são chamados de *símbolos de Christoffel* da parametrização local ϕ .

Tomando o produto escalar de $\frac{\partial^2 \phi}{\partial x_i \partial x_j}$ com $\frac{\partial}{\partial x_1}$ e $\frac{\partial}{\partial x_2}$ e usando a equação (2), obtemos:

$$\begin{cases} E\Gamma_{11}^{1} + F\Gamma_{11}^{2} = \frac{1}{2}\frac{\partial E}{\partial x_{1}} \\ F\Gamma_{11}^{1} + G\Gamma_{11}^{2} = \frac{\partial F}{\partial x_{1}} - \frac{1}{2}\frac{\partial E}{\partial x_{2}}. \end{cases}$$
(3)
$$\begin{cases} E\Gamma_{12}^{1} + F\Gamma_{12}^{2} = \frac{1}{2}\frac{\partial E}{\partial x_{2}} \\ F\Gamma_{12}^{1} + G\Gamma_{12}^{2} = \frac{1}{2}\frac{\partial G}{\partial x_{1}}. \end{cases} \end{cases}$$
(4)

$$\begin{cases} E\Gamma_{22}^{1} + F\Gamma_{22}^{2} = \frac{\partial F}{\partial x_{2}} - \frac{1}{2}\frac{\partial G}{\partial x_{1}} \\ F\Gamma_{22}^{1} + G\Gamma_{22}^{2} = \frac{1}{2}\frac{\partial G}{\partial x_{2}}. \end{cases}$$
(5)

Como $EG - F^2 \neq 0$, os sistemas lineares (3), (4) e (5) têm soluções únicas, que podem ser expressas em termos dos coeficientes da métrica e de suas derivadas. Em particular, os símbolos de Christoffel dependem somente da primeira forma fundamental de *S* e, portanto, são intrínsecos. Como consequência, qualquer quantidade que possa ser escrita em termos dos símbolos de Christoffel é intrínseca, isto é, depende somente da estrutura métrica da superfície e não da maneira que a superfície está imersa em \mathbb{R}^3 .

De modo análogo, existem funções $A_{ijk}^l, B_{ijk} : U \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

$$\frac{\partial^3 \phi}{\partial x_i \partial x_j \partial x_k} = A^1_{ijk} \frac{\partial}{\partial x_1} + A^2_{ijk} \frac{\partial}{\partial x_2} + B_{ijk} N.$$

Novamente, os termos A_{ijk}^l e B_{ijk} são simétricos com relação aos índices inferiores.

Além disso, diferenciando-se a equação (2) obtemos

$$\begin{aligned} A_{ijk}^{l} &= \frac{\partial \Gamma_{jk}^{l}}{\partial x_{i}} + \Gamma_{jk}^{1} \Gamma_{i1}^{l} + \Gamma_{jk}^{2} \Gamma_{i2}^{l} + h_{jk} a_{li}, \\ B_{ijk} &= \Gamma_{jk}^{1} h_{i1} + \Gamma_{jk}^{2} h_{i2} + \frac{\partial h_{jk}}{\partial x_{i}}. \end{aligned}$$

Visto que A_{ijk}^l são simétricos com relação aos índices inferiores, então $A_{ijk}^l - A_{jik}^l = 0$, donde obtemos, para *i*, *j*, *k*, *l* = 1, 2, as *equações fundamentais de Gauss*:

$$\frac{\partial \Gamma_{jk}^l}{\partial x_i} - \frac{\partial \Gamma_{ik}^l}{\partial x_j} + \sum_{m=1}^2 \left(\Gamma_{jk}^m \Gamma_{im}^l - \Gamma_{ik}^m \Gamma_{jm}^l \right) = - \left(h_{jk} a_{li} - h_{ik} a_{lj} \right).$$
(6)

Assim, se escrevermos a equação (6) para i = l = 1 e j = k = 2 obtemos

$$K = \frac{1}{G} \left(\frac{\partial \Gamma_{22}^1}{\partial x_1} - \frac{\partial \Gamma_{12}^1}{\partial x_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{1m}^1 - \Gamma_{12}^m \Gamma_{2m}^1 \right) \right).$$
(7)

Por (7), temos que a curvatura Gaussiana é intrínseca como está enunciado a seguir.

Teorema 2.48 (Teorema Egregium de Gauss). *A curvatura Gaussiana de uma superfície regular é uma propriedade intrínseca, isto é, depende somente da primeira forma fundamental.*

Da simetria dos coeficientes *B_{ijk}* seguem as *equações de Mainardi-Codazzi*.

Definição 2.49. Seja $S \subset \mathbb{R}^3$ uma superfície regular orientada com aplicação de Gauss $N : S \to \mathbb{S}^2$. Uma linha de curvatura da superfície regular S é uma curva α em S tal que α' é sempre uma direção principal. Uma direção assintótica em $p \in S$ é um vetor unitário $v \in T_pS$ tal que $II_p(v) = 0$. Uma curva assintótica de uma superfície regular S é uma curva α em S tal que α' é sempre uma direção assintótica.

2.3 GEODÉSICAS

Nesta seção, estudamos uma propriedade que caracteriza as "retas" de uma superfície *S*. Começamos generalizando para superfícies regulares a caracterização analítica local de segmentos de retas, isto é, curvas com vetor tangente constante.

Definição 2.50. Seja S uma superfície regular. Um campo de vetores ao longo de uma curva $\alpha : I \to S$ de classe C^{∞} é uma aplicação $\xi : I \to \mathbb{R}^3$ de classe C^{∞} tal que $\xi(t) \in T_{\alpha(t)}S$ para todo $t \in I$. Mais geralmente, se $\alpha : I \to S$ é uma curva C^{∞} por partes, um campo de vetores ao longo de α é uma aplicação contínua $\xi : I \to \mathbb{R}^3$ tal que $\xi(t) \in T_{\alpha(t)}S$ para todo $t \in I$, suave em cada subintervalo de I onde α é suave. O espaço vetorial de vetores ao longo de α será denotado por $\mathcal{T}(\alpha)$.

Um exemplo típico de campo de vetor ao longo de uma curva é o campo de vetores tangentes $\alpha' : I \to \mathbb{R}^3$ de uma curva $\alpha : I \to S$ de classe \mathcal{C}^{∞} .

A noção que apresentamos a seguir mede quanto um campo de vetores $\xi \in \mathcal{T}(\alpha)$ varia ao longo de uma curva $\alpha : I \to S$ de classe \mathcal{C}^{∞} , do ponto de vista da superfície regular *S*.

Definição 2.51. A derivada covariante de um campo de vetores $\xi \in \mathcal{T}(\alpha)$ ao longo de uma curva $\alpha : I \to S$ de classe C^{∞} em uma superfície regular S é o campo de vetores $D\xi \in \mathcal{T}(\alpha)$ dado por

$$D\xi(t) = \pi_{\alpha(t)}\left(\frac{d\xi}{dt}(t)\right),$$

onde $\pi_{\alpha(t)} : \mathbb{R}^3 \to T_{\alpha(t)}S$ é a projeção ortogonal sobre o plano tangente a S em $\alpha(t)$.

Observação 2.52. A derivada covariante é uma noção intrínseca, isto é, depende somente da primeira forma fundamental de S.

Definição 2.53. Seja $\alpha : I \to S$ uma curva de classe C^{∞} em uma superfície regular S. Um campo de vetores $\xi \in \mathcal{T}(\alpha)$ ao longo de α é dito **paralelo** se $D\xi = 0$. Mais geralmente, se $\alpha : I \to S$ é uma curva de classe C^{∞} por partes, um campo de vetores $\xi \in \mathcal{T}(\alpha)$ é **paralelo** se ele for paralelo em cada subintervalo de I no qual α é suave.

Proposição 2.54. Seja $\alpha : I \to S$ uma curva de classe C^{∞} por partes em uma superfície regular S. Então

- 1. dado $t_0 \in I$ e $v \in T_{\alpha(t_0)}S$, existe um único campo de vetores paralelo $\xi \in \mathcal{T}(\alpha)$ tal que $\xi(t_0) = v$;
- 2. se $\xi, \tilde{\xi} \in \mathcal{T}(\alpha)$ são campos de vetores paralelos ao longo de α , o produto interno $\langle \xi, \tilde{\xi} \rangle_{\alpha}$ é constante. Em particular, a norma de um campo paralelo é constante.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 5.1.6, p. 250].

Agora definiremos as curvas que têm o papel análogo ao das retas no plano, isto é, curvas com campo tangente paralelo.

Definição 2.55. *Uma* **geodésica** *em uma superfície regular S é uma curva* $\alpha : I \to S$ *de classe* C^{∞} *tal que* $\alpha' \in \mathcal{T}(\alpha)$ *é paralelo, isto é, tal que* $D\alpha' = 0$.

Observação 2.56. Dados um ponto $p \in S$ em uma superfície regular S e um vetor $v \in T_pS$ temos que existe uma única geodésica $\alpha :] - \varepsilon, \varepsilon [\rightarrow S$ em uma vizinhança de p tal que $\alpha(0) = p$ e $\alpha'(0) = v$.

Proposição 2.57. Seja α : $I \rightarrow S$ uma curva regular em uma superfície regular S. Então α é uma geodésica se, e somente se, α estiver parametrizada por um múltiplo do comprimento de arco e sua curvatura κ coincide com o valor absoluto de sua curvatura normal $|\kappa_n|$.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 5.1.18, p. 257].

Definição 2.58. Seja $\alpha : I \to S$ uma curva regular em uma superfície regular S. Um campo normal unitário ao longo de α é uma aplicação de classe $C^{\infty} N : I \to \mathbb{R}^3$ tal que |N(t)| = 1 $e N(t) \perp T_{\alpha(t)}S$ para todo $t \in I$.

Sejam $\alpha : I \to S$ uma curva regular em uma superfície regular $S \in N : I \to \mathbb{R}^3$ um campo normal unitário ao longo de α . Se $\xi \in \mathcal{T}(\alpha)$ é um campo de vetores unitários ao longo de α , diferenciando-se $\langle \xi, \xi \rangle_{\alpha} = 1$ obtemos que

$$0 = \frac{d}{dt} \left< \xi, \xi \right>_{\alpha} = 2 \left< D\xi, \xi \right>_{\alpha}.$$

Consequentemente $D\xi$ é ortogonal a N e a ξ ; então existe uma função $\lambda : I \to \mathbb{R}$ tal que $D\xi = \lambda N \wedge \xi$. Mais precisamente, como $N \wedge \xi$ é um vetor unitário, temos que $\lambda = \langle D\xi, N \wedge \xi \rangle_{\alpha}$ e, em particular, λ é de classe C^{∞} .

Definição 2.59. Sejam $\alpha : I \to S$ uma curva regular parametrizada por comprimento de arco em uma superfície regular $S \in N : I \to \mathbb{R}^3$ um campo normal unitário ao longo de α . A **curvatura geodésica** de α é a função $\kappa_g : I \to \mathbb{R}$ dada por

$$\kappa_g = \left\langle D\alpha', N \wedge \alpha' \right\rangle,$$

de modo que

$$D\alpha' = \kappa_g(N \wedge \alpha').$$

Nas condições da Definição 2.59 $\alpha'' = \kappa n e \alpha'' = (\alpha'')^{\top} + (\alpha'')^{\perp}$. Assim,

$$|\alpha''|^2 = \left| \left(\alpha'' \right)^\top \right|^2 + \left| \left(\alpha'' \right)^\perp \right|^2.$$

donde temos o seguinte resultado.

Corolário 2.60. Seja α : $I \rightarrow S$ uma curva parametrizada por comprimento de arco em uma superfície regular S. Então

$$\kappa^2 = \kappa_g^2 + \kappa_n^2.$$

Em particular, uma curva α parametrizada pelo comprimento de arco é uma geodésica se, e somente se, sua curvatura geodésica é zero em todo ponto.

Em outras palavras, a curvatura geodésica de uma curva mede o quanto uma curva "deixa" de ser uma geodésica.

Sejam $\alpha : [a, b] \to S$ uma curva regular em uma superfície regular $S, N : [a, b] \to \mathbb{R}^3$ um campo normal unitário ao longo de α e $\xi_1, \xi_2 \in \mathcal{T}(\alpha)$ dois campos de vetores unitários ao longo de α . Como { $\xi_1(t), N(t) \land \xi_1(t)$ } é uma base ortonormal de $T_{\alpha(t)}S$ para todo $t \in [a, b]$, podemos decompor $\xi_2(t)$ na base { $\xi_1(t), N(t) \land \xi_1(t)$ } como

$$\xi_2(t) = \left\langle \xi_2(t), \xi_1(t) \right\rangle \xi_1(t) + \left\langle \xi_2(t), N(t) \wedge \xi_1(t) \right\rangle \left(N(t) \wedge \xi_1(t) \right),$$

de modo que $(\langle \xi_2(t), \xi_1(t) \rangle)^2 + (\langle \xi_2(t), N(t) \land \xi_1(t) \rangle)^2 = |\xi_2(t)|^2 = 1$. Consequentemente, podemos definir uma aplicação contínua $\varphi : [a, b] \to \mathbb{S}^1$ dada por

$$\varphi(t) = \left(\langle \xi_2(t), \xi_1(t) \rangle, \langle \xi_2(t), N(t) \land \xi_1(t) \rangle \right).$$
(8)

O levantamento de φ é uma aplicação θ : $[a, b] \to \mathbb{R}$ tal que o diagrama da Figura 3 é comutativo, isto é, $\tilde{\pi} \circ \theta = \varphi$, onde $\tilde{\pi} : \mathbb{R} \to \mathbb{S}^1$ é dada por $\tilde{\pi}(x) = (\cos x, \sin x)$.

Figura 3: Levantamento de φ .

Tomando-se $x_0 \in \mathbb{R}$ tal que $\tilde{\pi}(x_0) = \varphi(a)$, podemos mostrar que existe um único levantamento θ de φ tal que $\theta(a) = x_0$. Esta prova é dada em [AT12, Proposicao 2.1.4, p. 69].

Definição 2.61. Sejam $\alpha : [a, b] \to S$ uma curva parametrizada por comprimento de arco em uma superfície regular $S \subset \mathbb{R}^3$, $N : [a, b] \to \mathbb{R}^3$ um campo normal unitário ao longo de α e $\xi_1, \xi_2 \in \mathcal{T}(\alpha)$ dois campos de vetores unitários ao longo de α . Uma **determinação contínua do ângulo entre** ξ_1 **e** ξ_2 é o levantamento $\theta : [a, b] \to \mathbb{R}$ da função $\varphi : [a, b] \to \mathbb{S}^1$ dada por (8).

Nas condições da Definição 2.61, temos que

$$\xi_2(t) = \cos(\theta(t))\xi_1(t) + \sin(\theta(t)) \left(N(t) \wedge \xi_1(t) \right).$$

Proposição 2.62. Sejam $\phi : U \to S$ uma parametrização ortogonal de uma superfície regular $S \subset \mathbb{R}^3 \ e \ \alpha : I \to \phi(U) \subset S$ uma curva parametrizada por comprimento de arco. Escreva $\alpha(t) = \phi(\alpha_1(t), \alpha_2(t));$ então a curvatura geodésica de α é dada por

$$\kappa_g = \frac{1}{2\sqrt{EG}} \left(\alpha_2' \frac{\partial G}{\partial x_1} - \alpha_1' \frac{\partial E}{\partial x_2} \right) + \frac{d\theta}{dt},$$

onde $\theta: I \to \mathbb{R}$ é uma determinação contínua do ângulo entre $\frac{\partial}{\partial x_1}\Big|_{\alpha} e \alpha'$.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 5.1.28, p. 260].

2.4 O TEOREMA DE GAUSS-BONNET E O TEOREMA DE POINCARÉ-HOPF

Nesta seção apresentaremos uma prova para o Teorema de Gauss-Bonnet, um resultado de bastante importância no estudo da geometria diferencial de superfícies. O Teorema de Gauss-Bonnet nos permite relacionar quantidades geométricas de uma superfície com a sua topologia global.

A versão local do Teorema de Gauss-Bonnet se aplica a regiões regulares simples que estão contidas na imagem de uma parametrização ortogonal da superfície, enquanto que para a versão global, subdividimos a superfície em diversas regiões regulares por meio de triangulações.

Nas condições da Definição 2.25, introduzimos a noção de polígonos curvilíneos pequenos.

Definição 2.63. *Um polígono curvilíneo* **pequeno** *em uma superfície regular S é um polígono curvilíneo cujo traço está contido na imagem de uma parametrização local.*

Sejam *S* uma superfície regular e α : $[a, b] \rightarrow \phi(U) \subset S$ um polígono curvilíneo pequeno com traço contido na imagem de uma parametrização local ϕ : $U \rightarrow S$. Consideremos $a = t_0 < t_1 < \cdots < t_k = b$ uma partição de [a, b] tal que $\alpha|_{[t_j-1,t_j]}$ é regular para $j = 1, \cdots, k$. O ângulo externo de α em t_j é o ângulo $\varepsilon_j \in [-\pi, \pi]$ de $\alpha'(t_j^-)$ para $\alpha'(t_j^+)$, tomado com sinal positivo se $\{\alpha'(t_j^-), \alpha'(t_j^+)\}$ for uma base positiva de $T_{\alpha(t_j)}S$, e com sinal negativo, caso contrário.

Nestas condições, estendemos a seguir o conceito de determinação contínua do ângulo para polígonos curvilíneos:

Definição 2.64. *Definimos a* **determinação do ângulo do polígono curvilíneo** α *como sendo a função* $\theta : [a, b] \to \mathbb{R}$ *tal que, para todo* $j = 1, ..., k, \theta : [t_{j-1}, t_j] \to \mathbb{R}$ *é a determinação contínua do ângulo entre* $\frac{\partial}{\partial x_1}\Big|_{\alpha} e \alpha', com \theta(t_j) \in] - \pi, \pi], e$

$$\theta(t_j) = \lim_{t \to t_j^-} \theta(t) + \varepsilon_j,$$

onde ε_i é o ângulo externo de $\alpha(t_i)$.

Definição 2.65. Sejam α : $[a,b] \rightarrow S$ um polígono curvilíneo pequeno em uma superfície regular $S \subset \mathbb{R}^3$ $e \ \theta : [a, b] \to \mathbb{R}$ determinação do ângulo de α . O índice de rotação $\rho(\alpha)$ do **polígono curvilíneo** *α é* dado por

$$\rho(\alpha) = \frac{1}{2\pi} \left(\theta(b) - \theta(a) \right).$$

Proposição 2.66. Sejam $\alpha : [a, b] \rightarrow S$ um polígono curvilíneo pequeno com traço contido na imagem de uma parametrização local $\phi: U \to S$ de uma superfície regular S e $\alpha_0 = \phi^{-1} \circ \alpha$: $[a, b] \rightarrow \mathbb{R}^2$. Então $\rho(\alpha) = \rho(\alpha_0) = \pm 1$.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 6.1.3, p. 305, Proposição 2.4,7, p. 87].

Definição 2.67. *Um polígono curvilíneo pequeno* α : $[a, b] \rightarrow S$ *em uma superfície regular* S é orientado positivamente (com respeito à parametrização local na qual o traço de α está contido na imagem) se o seu índice de rotação é +1. Caso contrário dizemos que α é orientado negativamente.

Definição 2.68. Uma região regular $R \subset S$ de uma superfície regular S é simples se ela é homeomorfa a um disco fechado.

Teorema 2.69 (Teorema de Gauss-Bonnet, versão local). Sejam S uma superfície regular, $R \subset S$ uma região simples contida na imagem de uma parametrização ortogonal local ϕ : $U \rightarrow S, \alpha : [a,b] \rightarrow S$ uma parametrização por comprimento de arco da fronteira de R, positivamente orientada com respeito a ϕ , com ângulos externos $\varepsilon_1, \ldots, \varepsilon_k \in]-\pi, \pi[$. Além

disso, consideremos $N = \frac{\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}}{\left|\frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2}\right|}$ o campo normal unitário que determina uma orientação

para $\phi(U) \in \kappa_g$ a curvatura geodésica de α nos subintervalos de [a, b] onde α é regular. Então

$$\int_{R} K d\sigma + \int_{a}^{b} \kappa_{g} ds + \sum_{i=1}^{k} \varepsilon_{i} = 2\pi,$$
(9)

onde K é a curvatura Gaussiana de S, d σ é o elemento de área de R e ds é o elemento de comprimento de α .

Demonstração. Consideremos $\alpha = \phi(\alpha_1, \alpha_2)$. Pela Proposição 2.62 temos que para pontos onde α é regular

$$\kappa_g = \frac{1}{2\sqrt{EG}} \left(\alpha_2' \frac{\partial G}{\partial x_1} - \alpha_1' \frac{\partial E}{\partial x_2} \right) + \frac{d\theta}{dt},$$

onde θ : $[a, b] \to \mathbb{R}$ é a determinação do ângulo de α tal que $\theta(a) \in [-\pi, \pi]$. Consequentemente, tomando $a = t_0 < t_1 < \cdots < t_k = b$ uma partição de [a, b] tal que $\alpha|_{[t_{i-1}, t_i]}$ é regular para $i = 1, \cdots, k$, temos, pelo Teorema de Gauss-Green [Lim15, Teorema de Green, p. 424], que

$$\int_{a}^{b} \kappa_{g} ds = \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} \kappa_{g}(s) ds$$

$$= \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} \left(\frac{1}{2\sqrt{EG}} \left(\alpha_{2}^{\prime} \frac{\partial G}{\partial x_{1}} - \alpha_{1}^{\prime} \frac{\partial E}{\partial x_{2}} \right) + \frac{d\theta}{dt} \right) ds$$

$$= \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} \left(\frac{1}{2\sqrt{EG}} \left(\alpha_{2}^{\prime} \frac{\partial G}{\partial x_{1}} - \alpha_{1}^{\prime} \frac{\partial E}{\partial x_{2}} \right) \right) ds + \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} \frac{d\theta}{dt} ds$$

$$= \iint_{\phi^{-1}(R)} \left(\frac{\partial}{\partial x_{1}} \left(\frac{1}{2\sqrt{EG}} \left(\frac{\partial G}{\partial x_{1}} \right) \right) + \frac{\partial}{\partial x_{2}} \left(\frac{1}{2\sqrt{EG}} \left(\frac{\partial E}{\partial x_{2}} \right) \right) \right) dx_{1} dx_{2}$$

$$+ \sum_{i=1}^{k} \left(\theta(t_{i}) - \theta(t_{i-1}) \right) - \sum_{i=1}^{k} \varepsilon_{i}. \tag{10}$$

Como a parametrização é ortogonal temos, pelo Teorema Egregium de Gauss 2.48, que

$$\iint_{\phi^{-1}(R)} \left(\frac{\partial}{\partial x_1} \left(\frac{1}{2\sqrt{EG}} \left(\frac{\partial G}{\partial x_1} \right) \right) + \frac{\partial}{\partial x_2} \left(\frac{1}{2\sqrt{EG}} \left(\frac{\partial E}{\partial x_2} \right) \right) \right) dx_1 dx_2 =$$

$$= -\iint_{\phi^{-1}(R)} K\sqrt{EG} dx_1 dx_2$$

$$= -\iint_R K d\sigma. \tag{11}$$

Além disso, como α está orientada positivamente temos, pela Definição 2.65 e Proposição 2.66, que

$$\sum_{i=1}^{k} (\theta(t_i) - \theta(t_{i-1})) = 2\pi\rho(\alpha) = 2\pi,$$
(12)

onde $\rho(\alpha)$ é o índice de rotação de α . Portanto, substituindo em (10) as equações (11) e (12), temos

$$\int_{a}^{b} \kappa_{g} ds = -\iint_{R} K d\sigma + 2\pi - \sum_{i=1}^{k} \varepsilon_{i}.$$

Ou seja,

$$\int_{R} K d\sigma + \int_{a}^{b} \kappa_{g} ds + \sum_{i=1}^{k} \varepsilon_{i} = 2\pi.$$

Nosso próximo objetivo é apresentar a versão global do teorema de Gauss-Bonnet, a qual será dada por meio de triangulação de uma região regular.

Definição 2.70. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Dizemos que $T \subset S$ é um **triângulo** em S se ∂T é uma curva simples, fechada e formada por três arcos regulares. Assim, se $\alpha : [a, b] \to S$ é uma parametrização para ∂T , existe uma partição $a = t_0 < t_1 < t_2 < t_3 = b$ de [a, b] tal que $\alpha|_{[t_{i-1},t_i]}$ é regular para i = 1, 2, 3.

Definição 2.71. Uma triangulação de uma superfície regular S é uma família de triângulos $\{T_i\}_{i \in I}$ em S tal que se $T_i \cap T_j \neq \emptyset$, com $i \neq j$, então $T_i \cap T_j$ ou é uma aresta ou é um vértice para T_i e T_j .

Definição 2.72. Se $\{T_i\}_{i=1}^n$ é uma triangulação finita de uma superfície (compacta) S, definimos a característica de Euler-Poincaré de S, denotada por $\mathcal{X}(S)$, como sendo o número

$$\mathcal{X}(S) = V - A + F,$$

onde V, A e F denotam o número de vértices, arestas e faces da triangulação.

Observação 2.73. $\mathcal{X}(S)$ não depende da triangulação escolhida e toda região regular e compacta de uma superfície admite uma triangulação [AT12, Capítulo 6.5, p. 338].

Proposição 2.74. Seja $S \subset \mathbb{R}^3$ uma superfície regular compacta e conexa. Então

$$\mathcal{X}(S) = 2 - 2g,\tag{13}$$

com $g \in \mathbb{N}$. Além disso, se $\tilde{S} \subset \mathbb{R}^3$ é uma superfície regular compacta e conexa com $\mathcal{X}(S) = \mathcal{X}(\tilde{S})$ então \tilde{S} é homeomorfa a S.

Demonstração. A demonstração pode ser vista em [AT12, Proposição 6.2.12, p. 313, Proposição 6.2.14, p. 314].

Observação 2.75. g denota o gênero da superfície S. Por (13), $\mathcal{X}(S) \leq 2$.

Teorema 2.76 (Teorema de Gauss-Bonnet, versão global). Seja $R \subset S$ uma região regular de uma superfície regular orientada S com fronteira ∂R orientada positivamente. Consideremos C_1, \ldots, C_k as componentes conexas da fronteira de R parametrizadas, para $j = 1, \ldots, k$, por curvas $\alpha_j : [a_j, b_j] \rightarrow S$ com curvaturas geodésicas κ_g^j . Denotemos por $\{\varepsilon_1, \ldots, \varepsilon_p\}$ o conjunto dos ângulos externos das curvas $\alpha_1, \ldots, \alpha_k$. Então

$$\iint_{R} K d\sigma + \sum_{j=1}^{k} \int_{a_j}^{b_j} \kappa_g^j ds + \sum_{h=1}^{p} \varepsilon_h = 2\pi \mathcal{X}(R), \tag{14}$$

onde K é a curvatura Gaussiana de S, d σ é o elemento de área de R e ds é o elemento de comprimento de α_i .

Demonstração. Consideremos uma triangulação T da região R de modo que cada triângulo $T_i \in \mathbb{T}$ está contido em uma vizinhança coordenada de uma família de parametrizações ortogonais, compatíveis com a orientação de S. Além disso, como a fronteira de todo triângulo de T está orientada positivamente, obtemos orientações opostas nas arestas que são comuns a triângulos adjacentes. Aplicando-se a versão local do Teorema de Gauss-Bonnet 2.69 a cada triangulo de T e somando-se os resultados, obtemos:

$$\iint_{R} K d\sigma + \sum_{j=1}^{k} \int_{a_j}^{b_j} \kappa_g^j ds + \sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij} = 2\pi F, \tag{15}$$

onde ε_{i1} , ε_{i2} e ε_{i3} são os ângulos externos do triângulo T_i e F é o número de triângulos de T.

Se denotarmos por $\phi_{ij} = \pi - \varepsilon_{ij}$, para j = 1, 2, 3, os ângulos internos de um triângulo T_i , temos que

$$\sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij} = \sum_{i=1}^{F} \sum_{j=1}^{3} \pi - \sum_{i=1}^{F} \sum_{j=1}^{3} \phi_{ij} = 3\pi F - \sum_{i=1}^{F} \sum_{j=1}^{3} \phi_{ij}.$$

Denotemos por A_e o número de arestas externas de \mathbb{T} , A_i o número de arestas internas de \mathbb{T} , V_e o número de vértices externos de \mathbb{T} e V_i o número de vértices internos de \mathbb{T} . Como C_i são fechadas, temos que $A_e = V_e$. Além disso, $3F = 2A_i + A_e$. Para provar este fato basta tomar uma indução no número de faces.

Desta forma, temos que

$$\sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij} = 2\pi A_i + \pi A_e - \sum_{i=1}^{F} \sum_{j=1}^{3} \phi_{ij}.$$

Os vértices externos são vértices das curvas *C_i* ou vértices introduzidos pela triangulação. Temos que $V_e = V_{ec} + V_{et}$, onde V_{ec} denota o número de vértices externos de alguma curva C_i e V_{et} o número de vértices externos que vêm da triangulação que não são vértices de alguma curva C_i .

Como a soma dos ângulos ao redor de cada vértice interno é 2π , temos que

$$\sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij} = 2\pi A_i + \pi A_e - \left(2\pi V_i + \pi V_{et} + \sum_{h=1}^{p} (\pi - \varepsilon_h)\right)$$
$$= 2\pi A_i + \pi A_e - 2\pi V_i - \pi V_{et} - \pi V_{ec} + \sum_{h=1}^{p} \varepsilon_h$$
$$= 2\pi (A_i + A_e) - \pi A_e - 2\pi V_i - \pi (V_{et} + V_{ec}) + \sum_{h=1}^{p} \varepsilon_h$$

$$= 2\pi (A_i + A_e) - 2\pi (V_i + V_e) - \pi A_e + \pi V_e + \sum_{h=1}^p \varepsilon_h$$

= $2\pi A - 2\pi V + \sum_{h=1}^p \varepsilon_h.$ (16)

Assim, substituindo-se (16) em (14) obtemos que

$$\iint_{R} Kd\sigma + \sum_{j=1}^{k} \int_{a_j}^{b_j} \kappa_g^j ds + 2\pi A - 2\pi V + \sum_{h=1}^{p} \varepsilon_h = 2\pi F.$$

Ou seja,

$$\iint_{R} K d\sigma + \sum_{j=1}^{k} \int_{a_j}^{b_j} \kappa_g^j ds + \sum_{h=1}^{p} \varepsilon_h = 2\pi \mathcal{X}(R).$$

Para finalizarmos esta seção, estudaremos o Teorema de Poincaré-Hopf como uma aplicação do Teorema de Gauss-Bonnet.

Definição 2.77. Seja $S \subset \mathbb{R}^3$ uma superfície regular. Um **campo de vetores (tangentes)** em S é uma aplicação $X : S \to \mathbb{R}^3$ de classe C^{∞} tal que $X(p) \in T_pS$ para todo $p \in S$. Denotaremos por $\mathcal{T}(S)$ o espaço vetorial dos campos tangentes em S.

Definição 2.78. Uma curva integral (ou trajetória) de um campo de vetores $X \in \mathcal{T}(S)$ em uma superfície regular S é uma curva $\alpha : I \to S$ tal que $\alpha'(t) = X(\alpha(t))$ para todo $t \in I$.

Definição 2.79. Seja $X \in \mathcal{T}(S)$ um campo de vetores em uma superfície regular S. Um ponto $p \in S$ é **singular** (ou um **zero**) de X se X(p) = 0. O conjunto dos pontos singulares de X será denotado por Sing(X). Um ponto não singular será chamado de **regular**.

A seguir, apresentamos uma maneira de associar um ponto singular isolado de um campo de vetores a um número inteiro que, em um certo sentido, resume o comportamento qualitativo do campo próximo ao ponto.

Sejam $X \in \mathcal{T}(S)$ um campo de vetores em uma superfície regular $S \in p \in S$ um ponto singular isolado de X, ou seja, sendo $\phi : U \to S$ é uma parametrização local centrada em p, então U é homeomorfo a um disco aberto e $\phi(U) \cap Sing(X) \subset \{p\}$, isto é, $\phi(U)$ não contém pontos singulares de X exceto p. Fixemos um campo de vetores $Y_0 \in \mathcal{T}(\phi(U))$ que não se anula em nenhum ponto, por exemplo $Y_0 = \frac{\partial}{\partial x_1}$. Tomemos $R \subset \phi(U)$ uma região regular simples com p no seu interior e $\alpha : [a, b] \to \partial R \subset \phi(U)$ uma parametrização da fronteira de R, orientada positivamente (com respeito a ϕ). Denotemos por θ : $[a, b] \to \mathbb{R}$ uma determinação contínua do ângulo entre $Y_0 \circ \alpha$ e $X \circ \alpha$.

Nestas condições, introduzimos a noção de índice de um campo.

Definição 2.80. *O* índice de X em p, denotado por ind_p(X), é dado por

$$ind_p(\mathbf{X}) = \frac{1}{2\pi} \left(\theta(b) - \theta(a) \right) \in \mathbb{Z}.$$
 (17)

Observação 2.81. Grosso modo, $ind_p(X)$ mede o número de voltas completas que X dá ao longo de uma curva cujo traço contenha p em seu interior.

Proposição 2.82. Sejam $X \in \mathcal{T}(S)$ um campo de vetores em uma superfície regular S e $p \in S$ um ponto de S que é um ponto singular isolado de X. Então

$$ind_{p}(X) = \begin{cases} +1, \ se \ \det(dX_{p}) > 0, \\ -1, \ se \ \det(dX_{p}) < 0. \end{cases}$$
(18)

Demonstração. A demonstração pode ser vista em [MR98, Proposição 8.25, p. 291].

A proposição a seguir nos dá uma maneira alternativa de calcular o índice de um campo.

Proposição 2.83. Sejam $X \in \mathcal{T}(S)$ um campo de vetores em uma superfície regular $S, p \in S$ uma singularidade isolada de $X \in R \subset \phi(U)$ uma região regular simples que contém p em seu interior, contida na imagem de uma parametrização local ortogonal $\phi : U \to S$ e tal que $R \cap Sing(X) \subset \{p\}$. Sejam também $\alpha : [a,b] \to \partial R \subset \phi(U)$ uma parametrização pelo comprimento de arco da fronteira de R, positivamente orientada com respeito a $\phi \in \eta \in \mathcal{T}(\alpha)$ um campo de vetores paralelos não-nulo ao longo de α . Então

$$ind_p(X) = \frac{1}{2\pi} \iint_R K d\sigma - \frac{1}{2\pi} \left(\psi(a) - \psi(b) \right),$$

onde ψ : $[a, b] \rightarrow \mathbb{R}$ é uma determinação contínua do ângulo entre $X \circ \alpha$ e η .

Demonstração. A demonstração pode ser vista em [AT12, Teorema 6.4.9, p. 328].

Teorema 2.84 (Teorema de Poincaré-Hopf). Seja $X \in \mathcal{T}(S)$ um campo de vetores cujos pontos singulares são todos isolados em uma superfície regular compacta orientável S. Então

$$\sum_{p \in Sing(X)} ind_p(X) = \mathcal{X}(S).$$
⁽¹⁹⁾

Demonstração. Consideremos uma triangulação \mathbb{T} da região *S* de modo que cada triângulo $T_j \in \mathbb{T}$ esteja contido em uma vizinhança coordenada de uma família de parametrizações ortogonais, compatíveis com a orientação de *S*. Além disso, como a fronteira de todo triângulo de \mathbb{T} está orientada positivamente, obtemos orientações opostas nas arestas que são comuns a triângulos adjacentes. Aplicando-se a Proposição 2.83 a cada triangulo de \mathbb{T} e somando-se os resultados, obtemos:

$$\iint_{S} Kd\sigma - 2\pi \sum_{p \in Sing(X)} ind_{p}(X) = \sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij}$$

onde ε_{i1} , ε_{i2} e ε_{i3} são os ângulos externos do triângulo T_i e F é o número de triângulos de **T**.

Mas, levando em conta que a aresta de cada $T_i \in \mathbb{T}$ aparece duas vezes com orientações opostas temos que $\sum_{i=1}^{F} \sum_{j=1}^{3} \varepsilon_{ij} = 0$. Portanto,

$$\sum_{p \in Sing(X)} ind_p(X) = \frac{1}{2\pi} \iint_S K d\sigma.$$
 (20)

Como, por hipótese, *S* é uma superfície regular compacta e orientável, isto é, uma região regular sem fronteira, temos, pelo Teorema de Gauss-Bonnet 2.76, que

$$\mathcal{X}(S) = \frac{1}{2\pi} \iint_{S} K d\sigma.$$
⁽²¹⁾

De (20) e (21) obtemos

$$\sum_{p\in Sing(X)}ind_p(X)=\mathcal{X}(S).$$

	_	_	

3 A FÓRMULA DE GAUSS-BONNET ESTEREOLÓGICA

Nesta seção, apresentamos a versão estereológica da fórmula de Gauss-Bonnet (14) para domínios com fronteira não vazia em uma superfície regular.

Para isso, introduzimos o conceito de degenerescência para os pontos singulares de um campo de vetores.

Definição 3.1. Sejam S uma superfície regular, $X \in \mathcal{T}(S)$ um campo de vetores em S e $p \in S$ um ponto singular. Dizemos que p é um ponto **não-degenerado de** X se det $(dX_p) \neq 0$; caso contrário, ele é dito **degenerado**.

O próximo resultado nos permite relacionar os pontos críticos de uma função com os pontos singulares do campo gradiente desta função.

Lema 3.2. Sejam $S \subset \mathbb{R}^3$ uma superfície regular $e f : S \to \mathbb{R}$ uma função de classe C^{∞} em S. Então $p \in S$ é um ponto singular não-degenerado de grad(f) se, e somente se, p é um ponto crítico não-degenerado de f.

Demonstração. Como $\langle grad(f)(p), v \rangle = df_p(v)$, para todo $v \in T_pS$, temos que $p \in S$ é um ponto singular de grad(f) se, e somente se, p é um ponto crítico de f. Suponhamos que p seja um ponto singular de grad(f). Sejam $v \in T_pS$ um vetor arbitrário e $\alpha :] - \varepsilon, \varepsilon[\rightarrow S$ uma curva parametrizada pelo comprimento de arco tal que $\alpha(0) = p$ e $\alpha'(0) = v$. Temos que

$$\langle grad(f)(\alpha(t)), \alpha'(t) \rangle = df_{\alpha(t)}(\alpha'(t)) = \frac{d}{dt}(f \circ \alpha)(t),$$
 (22)

para $t \in]-\varepsilon, \varepsilon[$. Tomando a derivada em t = 0 em (22) e tendo que grad(f)(p) = 0, então

$$Hess_{p}(f)(v) = \frac{d^{2}}{dt^{2}}\Big|_{t=0} (f \circ \alpha)(t)$$
$$= \left\langle \frac{d}{dt} \Big|_{t=0} grad(f)(\alpha(t)), v \right\rangle + \left\langle grad(f)(p), \alpha''(0) \right\rangle$$
$$= \left\langle d(grad(f))_{p}, v \right\rangle, \tag{23}$$

em cada ponto singular p de grad(f) e para cada $v \in T_pS$. Portanto, a diferencial $d(grad(f))_p$ é regular, isto é, $det(d(grad(f))_p) \neq 0$, se, e somente se, $Hess_pf$ é nãodegenerada.

Consequentemente, $p \in S$ é um ponto singular não-degenerado de grad(f) se, e somente se, p é um ponto crítico não-degenerado de f.

Lema 3.3. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $f : S \to \mathbb{R}$ uma função de classe C^{∞} em S. Se $p \in S$ é um ponto singular não-degenerado de grad(f) então p é um ponto singular isolado.

Demonstração. Pelo Lema 3.2 temos que $p \in S$ é um ponto singular não-degenerado de grad(f) se, e somente se, p é um ponto crítico não-degenerado de f. Seja $\phi : U \to S$ uma parametrização local em p tal que $p = \phi(q)$ e $q = (a, b) \in U$. Tomando-se $\varepsilon > 0$ suficientemente pequeno, podemos assumir que $\alpha(] - \varepsilon, \varepsilon[) \subset \phi(U)$. Se representarmos a composta $\phi^{-1} \circ \alpha$ por β e escrevermos β explicitamente em componentes $\beta(t) = (x_1(t), x_2(t))$, então temos que

$$(f \circ \alpha)(t) = (f \circ \phi) \circ (\phi^{-1} \circ \alpha)(t) = (f \circ \phi)(x_1(t), x_2(t)).$$

Logo,

$$(f \circ \alpha)'(t) = \frac{\partial}{\partial x_1} (f \circ \phi)(x_1(t), x_2(t))x_1'(t) + \frac{\partial}{\partial x_2} (f \circ \phi)(x_1(t), x_2(t))x_2'(t)$$

e

$$(f \circ \alpha)''(0) = \frac{\partial^2}{\partial x_1 \partial x_1} (f \circ \phi)(a, b) x_1'(0)^2 + 2 \frac{\partial^2}{\partial x_1 \partial x_2} (f \circ \phi)(a, b) x_1'(0) x_2'(0) + \frac{\partial^2}{\partial x_2 \partial x_2} (f \circ \phi)(a, b) x_2'(0)^2 + \frac{\partial}{\partial x_1} (f \circ \phi)(a, b) x_1''(0) + \frac{\partial}{\partial x_2} (f \circ \phi)(a, b) x_2''(0).$$

Mas,

$$\frac{\partial}{\partial x_1}(f \circ \phi)(a, b) = d(f \circ \phi)_{(a,b)}(1, 0) = df_p(d\phi_{(a,b)}(1, 0)) = 0,$$

pois *p* é um ponto crítico de *f*. Analogamente, $\frac{\partial}{\partial x_2}(f \circ \phi)(a, b) = 0$. Consequentemente,

$$Hess_p f(v) = (f \circ \alpha)''(0) = \frac{\partial^2}{\partial x_1 \partial x_1} (f \circ \phi)(a, b) x_1'(0)^2 + 2 \frac{\partial^2}{\partial x_1 \partial x_2} (f \circ \phi)(a, b) x_1'(0) x_2'(0) + \frac{\partial^2}{\partial x_2 \partial x_2} (f \circ \phi)(a, b) x_2'(0)^2.$$
(24)

Logo, da equação (24), temos que se p é um ponto crítico não-degenerado de f então p é um ponto crítico não-degenerado de $(f \circ \phi) : U \subset \mathbb{R}^2 \to \mathbb{R}$. Por [Lim15, Teorema 4, p. 156] temos que p é isolado.

Lema 3.4. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $f : S \to \mathbb{R}$ uma função de classe C^{∞} em S e $p \in S$ um ponto singular não-degenerado de grad(f). São equivalentes:

1. A hessiana $Hess_p f$ de f em p é positiva ou negativa definida;

2.
$$ind_p(grad(f)) = +1;$$

3. p é um ponto de máximo ou mínimo local de f.

Demonstração. (1) \iff (3): (\iff): Suponhamos que *p* seja um ponto de máximo (resp., mínimo) local de *f* e consideremos $v \in T_pS$ um vetor arbitrário e α :] $-\varepsilon, \varepsilon[\rightarrow S$ uma curva parametrizada pelo comprimento de arco tal que $\alpha(0) = p \in \alpha'(0) = v$. Então a função $f \circ \alpha$ tem um máximo (resp., mínimo) local em 0 e, consequentemente, $Hess_pf(v) = (f \circ \alpha)''(0) \le 0$ (resp., $Hess_pf(v) = (f \circ \alpha)''(0) \ge 0$), isto é, $Hess_pf$ é negativa (resp., positiva) definida.

 (\implies) : Seja $\phi : U \to S$ uma parametrização local em p tal que $p = \phi(q)$ e $q = (a, b) \in U$. Tomando-se $\varepsilon > 0$ suficientemente pequeno, podemos assumir que $\alpha(] - \varepsilon, \varepsilon[) \subset \phi(U)$. Seja $\beta(t) = (x_1(t), x_2(t)) = (\phi^{-1} \circ \alpha)(t)$.

Logo, da equação (24), temos que se $Hess_p f$ é negativa (resp., positiva) definida no ponto crítico p, então q = (a, b) é um ponto crítico de $f \circ \phi : U \subset \mathbb{R}^2 \to \mathbb{R}$ e a hessiana de $f \circ \phi$ no ponto q é negativa (resp., positiva) definida. Por [Lim15, Teorema 5, p. 157] temos que se a hessiana de $f \circ \phi$ no ponto q é negativa (resp., positiva) definida em pentão p é um ponto de máximo (resp., mínimo) local.

(1) \iff (2): Pela equação (23) e pela Proposição 2.82 temos que

$$ind_{p}(grad(f)) = \begin{cases} +1, se \det Hess_{p}f > 0, \\ -1, se \det Hess_{p}f < 0. \end{cases}$$
(25)

(\implies): Suponha que a hessiana $Hess_p f$ em p é positiva ou negativa definida. Então det $Hess_p f > 0$ e, pela equação (25), temos que $ind_p(grad(f)) = +1$.

(\Leftarrow): Suponha que $ind_p(grad(f)) = +1$ então, pela equação (25), temos que det $Hess_pf > 0$, isto é, a hessiana $Hess_pf$ em p é positiva ou negativa definida.

Lema 3.5. Sejam $S \subset \mathbb{R}^3$ uma superfície regular, $f : S \to \mathbb{R}$ função de classe C^{∞} em S e $p \in S$ um ponto singular não-degenerado de grad(f). São equivalentes:

- 1. A hessiana $Hess_p f$ de f em p é indefinida;
- 2. $ind_{p}(grad(f)) = -1;$

3. $p \notin um$ ponto de sela de f.

Demonstração. (1) \iff (3): (\Leftarrow): Suponhamos que *p* seja um ponto de sela de *f* e consideremos $v \in T_pS$ um vetor arbitrário e α :] $-\varepsilon, \varepsilon$ [$\rightarrow S$ uma curva parametrizada pelo comprimento de arco tal que $\alpha(0) = p$ e $\alpha'(0) = v$. Então a função $f \circ \alpha$ tem uma inflexão em 0 e, consequentemente, s.p.g., $Hess_pf(\alpha'(-\delta)) = (f \circ \alpha)''(-\delta) < 0$ e $Hess_pf(\alpha'(+\delta)) = (f \circ \alpha)''(+\delta) > 0$, para $0 < \delta < \varepsilon$, isto é, $Hess_pf$ é indefinida.

 (\implies) : Seja $\phi : U \to S$ uma parametrização local em p tal que $p = \phi(q)$ e $q = (a, b) \in U$. Tomando-se $\varepsilon > 0$ suficientemente pequeno, podemos assumir que $\alpha(] - \varepsilon, \varepsilon[) \subset \phi(U)$. Seja $\beta(t) = (x_1(t), x_2(t)) = (\phi^{-1} \circ \alpha)(t)$.

Logo, da equação (24), temos que se $Hess_p f$ é indefinida no ponto crítico p, então q = (a, b) é um ponto crítico de $f \circ \phi : U \subset \mathbb{R}^2 \to \mathbb{R}$ e a hessiana de $f \circ \phi$ no ponto q é indefinida. Por [Lim15, Teorema 5, p. 157] temos que se a hessiana de $f \circ \phi$ no ponto q é indefinida em p então p é um ponto de sela.

(1) \iff (2): (\implies): Suponha que a hessiana $Hess_p f$ em p é indefinida. Então det $Hess_p f < 0$ e, pela equação (25), temos que $ind_p(grad(f)) = -1$.

(\Leftarrow): Suponha que $ind_p(grad(f)) = -1$ então, pela equação (25), temos que det $Hess_p f < 0$, isto é, a hessiana $Hess_p f$ em p é indefinida.

A seguir, apresentamos uma versão do Teorema de Poincaré-Hopf 2.84 para funções de Morse, que agora definimos.

Definição 3.6. Sejam $S \subset \mathbb{R}^3$ uma superfície regular $e f : S \to \mathbb{R}$ uma função de classe C^{∞} em S. Chamaremos a função f de **função de Morse** se todos os seus pontos críticos são não-degenerados.

O índice de uma função no ponto crítico será definido a seguir.

Definição 3.7. Sejam $S \subset \mathbb{R}^3$ uma superfície, $f : S \to \mathbb{R}$ uma função de Morse e $p \in S$ um ponto crítico de f. Definimos o índice de f em p por:

$$ind_p(f) = \begin{cases} +1, \ se \ p \ e \ ponto \ de \ extremo \ local, \\ -1, \ se \ p \ e \ ponto \ de \ sela. \end{cases}$$

Teorema 3.8 (Teorema de Poincaré-Hopf para funções de Morse). *Sejam* $S \subset \mathbb{R}^3$ *uma superfície regular compacta orientável e* $f : S \to \mathbb{R}$ *uma função de Morse. Então*

$$\sum_{p \in Crit(f)} ind_p(f) = \mathcal{X}(S), \tag{26}$$

onde Crit(f) é o conjunto dos pontos críticos de f.

Demonstração. Como f é uma função de Morse, temos, pelo Lema 3.2, que todo ponto singular de grad(f) é não-degenerado. Mas, pelo Lema 3.3, temos que todo ponto singular de grad(f) é isolado. Desta maneira, pelo Teorema de Poincaré-Hopf 2.84, segue-se que

$$\sum_{v \in Sing(grad(f))} ind_p(grad(f)) = \mathcal{X}(S).$$

Mas, Crit(f) = Sing(grad(f)) e se $p \in Crit(f)$ for um ponto de extremo local então, pelo Lema 3.4, $ind_p(f) = +1 = ind_p(grad(f))$, enquanto que se $p \in Crit(f)$ for um ponto de sela então, pelo Lema 3.5, $ind_p(f) = -1 = ind_p(grad(f))$, isto é, para todo $p \in Crit(f)$ temos que $ind_p(f) = ind_p(grad(f))$.

Portanto,

$$\sum_{p \in Crit(f)} ind_p(f) = \sum_{p \in Sing(grad(f))} ind_p(grad(f)) = \mathcal{X}(S).$$

O Teorema de Poincaré-Hopf 2.84 foi generalizado para superfícies regulares com fronteira não vazia por Morse [Mor29, Teorema A_0 , p. 170]. Antes de apresentarmos uma versão deste resultado, estendemos a Definição 2.80 de índice de um campo de vetores para domínios com fronteira não vazia.

Sejam $S \subset \mathbb{R}^3$ uma superfície regular compacta e orientável e $D \subset S$ um domínio em *S* com fronteira não vazia, isto é, um subconjunto aberto de *S*, conexo e com fecho compacto. Consideremos $X \in \mathcal{T}(D)$ um campo de vetores suave em *D* tal que:

- 1. *X* tem singularidades isoladas em *D*;
- 2. *X* não tem singularidades em ∂D ;
- 3. *X* é ortogonal a ∂D somente em um número finito de pontos.

Se $p \in D$ é uma singularidade isolada de *X*, o índice de *X* em *p* é dado pela equação (17).

Se $p \in \partial D$ é um ponto de ∂D onde X é ortogonal a ∂D , consideramos $Y \in \mathcal{T}(S)$ um campo de vetores tangentes a S tal que, para todo $q \in S$, $\langle X(q), Y(q) \rangle = 0$ e a base $\{Y(q), X(q)\}$ de T_qS é positiva. Notamos que a curva integral de Y em p está localmente contida em $S \setminus D$ ou em D. Desta maneira, definimos o índice de X em p por

$$ind_p(X) = \begin{cases} +1, \text{ se a curva integral de } Y \text{ está contida em } S \setminus D, \\ -1, \text{ se a curva integral de } Y \text{ está contida em } D. \end{cases}$$

Nas Figuras 4 e 5 a região hachurada representa o domínio *D*, a região não hachurada representa $S \setminus D$, as setas verticais para cima (em vermelho) representam o campo *X*, enquanto que as setas horizontais para direita (em verde) representam o campo *Y*. A curva α destacada nessas figuras é a curva integral de *Y* em *p*.

Figura 4: $ind_p(X) = +1$.

Figura 5: $ind_p(X) = -1$.

Teorema 3.9 (Teorema de Poincaré-Hopf generalizado). Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável $S \in X \in \mathcal{T}(D)$ um campo de vetores suave em D tal que X tem singularidades isoladas em D, não tem singularidades em ∂D e é ortogonal a ∂D somente em um número finito de pontos. Então

$$\sum_{p \in Sing(X)} ind_p(X) + (1/2) \sum_{X(p) \perp T_p \partial D} ind_p(X) = \mathcal{X}(D).$$
⁽²⁷⁾

Demonstração. A demonstração pode ser vista em [Mor29, Teorema A_0 , p. 170] ou em [Jubo9, Teorema 12, p. 5].

Nosso próximo objetivo é adaptar o Teorema de Poincaré-Hopf generalizado 3.9 para funções de Morse.

Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável *S* e $f : D \to \mathbb{R}$ uma função tal que:

- 1. *f* é uma função de Morse em *D*;
- 2. *f* não tem pontos críticos em ∂D ;
- 3. A restrição $f|_{\partial D}: \partial D \to \mathbb{R}$ é uma função de Morse.

Se $p \in D$ é um ponto crítico de f, o índice de X em p é dado pela Definição 3.7.

Se $p \in \partial D$ é um ponto crítico de $f|_{\partial D}$ então o conjunto de nível $f^{-1}(f(p))$ está localmente contido ou em $S \setminus D$ ou em D, pois f não tem pontos críticos na fronteira. Desta maneira, definimos o índice de f em p por

$$ind_{p}(f) = \begin{cases} +1, \text{ se } f^{-1}(f(p)) \text{ está localmente contido ou em } S \setminus D, \\ -1, \text{ se } f^{-1}(f(p)) \text{ está localmente contido ou em } D. \end{cases}$$

Os pontos $p \in \partial D$ para os quais $f^{-1}(f(p))$ está localmente contido em $S \setminus D$ são chamados de pontos do tipo "ilha", enquanto que $p \in \partial D$ para os quais $f^{-1}(f(p))$ está localmente contido ou em D são do tipo "ponte". As Figuras 6 e 7 ilustram os pontos do tipo "ilha" e do tipo "ponte", respectivamente.

Figura 6: "Ilha"

Figura 7: "Ponte"

Lema 3.10. Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável $S, p \in \partial D$ e $f : D \to \mathbb{R}$ uma função tal que a restrição $f|_{\partial D}: \partial D \to \mathbb{R}$ é uma função de Morse. Então valem as seguintes afirmações:

1. $Crit(f|_{\partial D}) = \{p \in \partial D : grad(f)(p) \perp T_p \partial D\};$

2. grad(f) é ortogonal a ∂D somente em um número finito de pontos;

3.
$$ind_p(f) = ind_p(grad(f))$$
.

Demonstração. (1): Note que $p \in \partial D$ é um ponto crítico de $f|_{\partial D}$ se, e somente se, $\langle grad(f)(p), v \rangle = 0$, para todo $v \in T_p \partial D$, isto é, $p \in \partial D$ é um ponto crítico de $f|_{\partial D}$ se, e somente se, $grad(f)(p) \perp T_p \partial D$.

(2): Como $f|_{\partial D}$ é uma função de Morse e D é um domínio temos que $f|_{\partial D}$ tem uma quantidade finita de pontos críticos. Logo, pelo item 1, temos o desejado.

(3): Consideremos $Y \in \mathcal{T}(S)$ um campo de vetores tangentes a S tal que, para todo $q \in S$, $\langle grad(f)(q), Y(q) \rangle = 0$ e a base $\{Y(q), grad(f)(q)\}$ de T_qS é positiva. Pela Proposição 2.14 temos que grad(f) é ortogonal a $f^{-1}(f(p))$. Logo, o traço da curva integral de Y é localmente dado por $f^{-1}(f(p))$. Portanto, se a curva integral de Y, numa vizinhança de p, está contida em $S \setminus D$ (resp., D) então $f^{-1}(f(p))$ está localmente contido em $S \setminus D$ (resp., D), donde temos que $ind_p(f) = ind_p(grad(f))$.

Teorema 3.11 (Teorema de Poincaré-Hopf generalizado para funções de Morse). *Sejam* $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável S e $f : D \to \mathbb{R}$ uma função tal que f é uma função de Morse em D, f não tem pontos críticos em ∂D e a restrição $f|_{\partial D}: \partial D \to \mathbb{R}$ é uma função de Morse. Então

$$\sum_{p \in Crit(f)} ind_p(f) + (1/2) \sum_{p \in Crit(f|_{\partial D})} ind_p(f) = \mathcal{X}(D).$$
(28)

Demonstração. Como f é uma função de Morse, temos, pelo Lema 3.2, que todo ponto singular de grad(f) em D é não-degenerado. Mas, pelo Lema 3.3, temos que todo ponto singular de grad(f) é isolado em D. Pelo item 2 do Lema 3.10, temos que grad(f) é ortogonal a ∂D somente em um número finito de pontos. Além disso, por hipótese, f não tem pontos críticos em ∂D e, portanto, grad(f) não tem pontos singulares em ∂D .

Desta maneira, temos que grad(f) tem singularidades isoladas em D, não tem singularidades em ∂D e é ortogonal a ∂D somente em um número finito de pontos e, portanto, pelo Teorema de Poincaré-Hopf generalizado 3.9, segue-se que

$$\sum_{p \in Sing(grad(f))} ind_p(grad(f)) + (1/2) \sum_{grad(f)(p) \perp T_p \partial D} ind_p(grad(f)) = \mathcal{X}(D).$$
(29)

Para $p \in D$, Crit(f) = Sing(grad(f)) e se $p \in Crit(f)$ for um ponto de extremo local então, pelo Lema 3.4, $ind_p(f) = +1 = ind_p(grad(f))$, enquanto que se $p \in Crit(f)$ for um ponto de sela então, pelo Lema 3.5, $ind_p(f) = -1 = ind_p(grad(f))$, isto é, para todo $p \in Crit(f)$ temos que $ind_p(f) = ind_p(grad(f))$.

Para $p \in \partial D$, pelo item 1 do Lema 3.10, temos que $Crit(f|_{\partial D}) = \{p \in \partial D : grad(f)(p) \perp T_p \partial D\}$. Além disso, pelo item 3 do Lema 3.10, temos que $ind_p(f) = ind_p(grad(f))$.

$$\sum_{p \in Crit(f)} ind_p(f) = \sum_{p \in Sing(grad(f))} ind_p(grad(f)).$$
(30)

$$\sum_{p \in Crit(f|_{\partial D})} ind_p(f) = \sum_{grad(f)(p) \perp T_p \partial D} ind_p(grad(f)).$$
(31)

Por (29), (30) e (31) temos que

$$\sum_{p \in Crit(f)} ind_p(f) + (1/2) \sum_{p \in Crit(f|_{\partial D})} ind_p(f) = \mathcal{X}(D).$$

De agora em diante, nossa atenção estará voltada para a função altura, que é uma função de Morse.

Seja $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular suave e orientável S em \mathbb{R}^3 . Fixado $u \in S^2$ arbitrário, consideremos a *função altura* $h_u : \mathbb{R}^3 \to \mathbb{R}$ dada por $h_u(p) = \langle p, u \rangle$. Pelo Teorema da transversalidade [AT12, Teorema 4.7.6, p, 232], quando restringimos a função altura h_u a D (ou S), a intersecção $\pi_{u,\lambda} \cap D$ (resp., $\pi_{u,\lambda} \cap S$) é uma curva plana, onde $\pi_{u,\lambda}$ é o plano $h_u^{-1}(\lambda)$, para todo $\lambda \ge 0$. Em particular, pelo Teorema da função implícita [Lim15, Teorema global da função implícita, p. 169], se λ é um valor regular de $h_u|_D$ (e, consequentemente, de $h_u|_S$), temos que $\pi_{u,\lambda} \cap S$ é uma curva suave em S.

Daremos uma interpretação geométrica para os pontos críticos de $h_u|_D$ e $h_u|_{\partial D}$ e os índices correspondentes. Seja $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular suave e orientável S em \mathbb{R}^3 . Dado $p \in D$, denotaremos por N(p) o vetor normal unitário de D em p e K(p) a curvatura Gaussiana de D em q. Dado $q \in \partial D$, denotaremos por n(q) o vetor conormal unitário de ∂D em q e $\kappa_g(q)$ a curvatura geodésica de ∂D em D no ponto q. Por fim, denotaremos por $\kappa_g^u(p)$ a curvatura geodésica da curva $\pi_{u,\lambda} \cap S$ no ponto p. Nestas condições, temos o seguinte resultado.

Teorema 3.12. Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular suave e orientável S em \mathbb{R}^3 , $u \in \mathbb{S}^2$ e \tilde{u} a projeção ortogonal normalizada de u em T_pD , para $p \in D$.

- 1. $p \in D$ é um ponto crítico de $h_u|_D$ se, e somente se, $\pi_{u,\lambda}$ é tangente a D em p se, e somente se, $u = \pm N(p)$.
- 2. $p \in D$ é um ponto crítico não-degenerado de $h_u|_D$ se, e somente se, $K(p) \neq 0$. Além disso, p é um extremo local de $h_u|_D$ quando K(p) > 0 e um ponto de sela quando K(p) < 0.
- 3. Se $p \in \partial D$ é um ponto regular de $h_u|_D$ então p é um ponto crítico de $h_u|_{\partial D}$ se, e somente se, $\pi_{u,\lambda} \cap S$ é tangente a ∂D em p se, e somente se, $\tilde{u} = \pm n(p)$.

4. Se $p \in \partial D$ é um ponto regular de $h_u|_D$ e um ponto crítico de $h_u|_{\partial D}$ então $p \in \partial D$ é não degenerado se, e somente se, $\kappa_g(p) \neq \kappa_g^u(p)$. Além disso, p é uma ilha quando $\kappa_g(p) > \kappa_g^u(p)$ e uma ponte quando $\kappa_g(p) < \kappa_g^u(p)$.

Demonstração. (1): Seja $v \in T_pD$ um vetor unitário arbitrário e consideremos α :] $-\varepsilon, \varepsilon$ [$\rightarrow D \subset S$ uma curva parametrizada pelo comprimento de arco em D tal que $\alpha(0) = p$ e $\alpha'(0) = v$. Assim,

$$d(h_u|_D)_p(v) = \left.\frac{d}{dt}\right|_{t=0} h_u|_D(\alpha(t)) = \left.\frac{d}{dt}\right|_{t=0} \langle \alpha(t), u \rangle = \langle \alpha'(0), u \rangle = \langle v, u \rangle.$$
(32)

Por (32), temos que $p \in D$ é um ponto crítico de $h_u|_D$ se, e somente se, $\langle v, u \rangle = 0$, para todo $v \in T_pD$, isto é, u é perpendicular a T_pD . Portanto, temos que p é um ponto crítico de $h_u|_D$ se, e somente se, $u = \pm N(p)$.

Seja $w \in T_p \pi_{u,\lambda}$ um vetor unitário arbitrário e consideremos $\beta :] - \varepsilon, \varepsilon [\rightarrow \pi_{u,\lambda}]$ uma curva parametrizada pelo comprimento de arco em $\pi_{u,\lambda}$ tal que $\beta(0) = p \in \beta'(0) = w$. Note que $h_u|_D(\beta(t)) = \langle \beta(t), u \rangle = \lambda$, para todo $t \in] - \varepsilon, \varepsilon [$, então $\langle \beta'(t), u \rangle = 0$, isto é, $u = \pm N_{\pi_{u,\lambda}}(p)$, onde $N_{\pi_{u,\lambda}}(p)$ é o vetor normal unitário a $\pi_{u,\lambda}$ em p.

Portanto, temos que $u = \pm N(p)$ se, e somente se, $N(p) = \pm N_{\pi_{u,\lambda}}(p)$, isto é, $\pi_{u,\lambda}$ é tangente a D em p.

(2): Afirmamos que $Hess_p(h_u|_D)(v) = II_p(v)$.

De fato, seja $v \in T_pD$ um vetor unitário arbitrário e consideremos $\alpha :] - \varepsilon, \varepsilon [\to D \subset S]$ uma curva parametrizada pelo comprimento de arco em *D* tal que $\alpha(0) = p \in \alpha'(0) = v$. Assim,

$$Hess_{p}\left(h_{u}|_{D}\right)\left(\upsilon\right) = \left.\frac{d^{2}}{dt^{2}}\right|_{t=0}h_{u}|_{D}(\alpha(t)) = \left.\frac{d^{2}}{dt^{2}}\right|_{t=0}\left\langle\alpha(t), u\right\rangle = \left\langle\alpha''(0), u\right\rangle.$$
(33)

Mas, $\langle \alpha'(t), N(\alpha(t)) \rangle = 0$, para todo $t \in] - \varepsilon, \varepsilon[$. Logo,

$$0 = \frac{d}{dt}\Big|_{t=0} \left\langle \alpha'(t), N(\alpha(t)) \right\rangle = \left\langle \alpha''(0), N(p) \right\rangle + \left\langle \alpha'(0), \frac{d}{dt} \Big|_{t=0} N(\alpha(t)) \right\rangle$$
(34)

Como $p \in D$ é um ponto crítico de $h_u|_D$ temos, pelo item (1), que $u = \pm N(p)$. Sem perda de generalidade, tomemos u = N(p). Por (34), temos que

$$\langle \alpha''(0), u \rangle = -\langle dN_p(v), v \rangle.$$
(35)

Substituindo (35) em (33), obtemos

$$Hess_p(h_u|_D)(v) = -\langle dN_p(v), v \rangle = II_p(v).$$

Consideremos agora $\{v_1, v_2\}$ um referencial ortonormal principal em *p* com curvaturas principais κ_1, κ_2 . Matricialmente obtemos:

$$Hess_{p}(h_{u}|_{D})(v) = v \begin{pmatrix} -\kappa_{1} & 0\\ 0 & -\kappa_{2} \end{pmatrix} v^{T}.$$
(36)

Por (36), $p \in D$ é um ponto crítico não-degenerado de $h|_D$ se, e somente se, $\kappa_1 \kappa_2 \neq 0$, isto é, $K(p) \neq 0$.

Além disso, se K(p) > 0 então $\kappa_1 \kappa_2 > 0$. Logo, por (36), a hessiana $Hess_p(h_u|_D)$ é positiva ou negativa definida e, portanto, pelo Lema 3.4, temos que p é um ponto de extremo local de f.

Analogamente, se K(p) < 0 então $\kappa_1 \kappa_2 < 0$. Logo, por (36), a hessiana $Hess_p(h_u|_D)$ é indefinida e, portanto, pelo Lema 3.5, temos que p é um ponto de sela de f.

(3): Consideremos $\alpha : I \to \partial D \subset S$ uma parametrização pelo comprimento de arco de ∂D tal que $\alpha(t_0) = p$ e $n(p) = N(p) \land \alpha'(t_0)$. Como $\{N(p), \alpha'(t_0), n(p)\}$ é uma base ortonormal de \mathbb{R}^3 , temos que

$$u = \langle u, N(p) \rangle N(p) + \langle u, \alpha'(t_0) \rangle \alpha'(t_0) + \langle u, n(p) \rangle n(p).$$

Em particular, como *p* é um ponto regular de $h_u|_D$ temos, pelo item 1, que $u \neq \pm N(p)$, donde segue-se que $\tilde{u} = \frac{v}{|v|}$, onde

$$v = \langle u, \alpha'(t_0) \rangle \alpha'(t_0) + \langle u, n(p) \rangle n(p).$$

Então, $\tilde{u} = \pm n(p)$ se, e somente se, $\langle u, \alpha'(t_0) \rangle = 0$ (isto é, $\pi_{u,\lambda} \cap S$ é tangente a ∂D em p) se, e somente se, $p \in \partial D$ é um ponto crítico de $h_u|_{\partial D}$.

(4): Consideremos $\alpha : I \to \partial D \subset S$ uma parametrização pelo comprimento de arco de ∂D tal que $\alpha(t_0) = p \in n(p) = N(p) \land \alpha'(t_0)$. Seja $\beta : I \to \pi_{u,\lambda} \cap S \subset S$ uma parametrização pelo comprimento de arco de $\pi_{u,\lambda} \cap S$ tal que $\beta(s_0) = p$. Neste caso, $\langle u, \beta(s) \rangle = \lambda$, para todo $s \in I$, então $\langle u, \beta'(s) \rangle = 0$. Disto temos que \tilde{u} é também igual ao vetor normal a $\beta'(s_0)$ em $T_p \partial D$. Em particular, como p é um ponto regular de $h_u|_D$ e um ponto crítico de $h_u|_{\partial D}$, pelo item 3, $\tilde{u} = \pm n(p)$ e, consequentemente, as curvas α e β são tangentes em p.

Como α é parametrizada pelo comprimento de arco, temos

$$\alpha''(t_0) = \kappa_n(p)N(p) + \kappa_g(p)n(p),$$

donde segue-se que

$$\langle u, \alpha''(t_0) \rangle = \kappa_n(p) \langle u, N(p) \rangle + \kappa_g(p) \langle u, n(p) \rangle.$$
(37)

Como β é parametrizada pelo comprimento de arco, temos

$$\beta''(s_0) = \kappa_n^u(p)N(p) + \kappa_g^u(p)n(p),$$

onde $\kappa_n^u(p)$ é a curvatura normal da curva $\pi_{u,\lambda} \cap S$ no ponto p, donde concluímos que

$$0 = \langle u, \beta''(s_0) \rangle = \kappa_n^u(p) \langle u, N(p) \rangle + \kappa_g^u(p) \langle u, n(p) \rangle.$$
(38)

Como as curvas $\alpha \in \beta$ são tangentes em p, pelo Teorema de Meusnier 2.41, temos que $\kappa_n^u(p) = \kappa_n(p)$. Logo, subtraindo (37) de (38), obtemos

$$\langle u, \alpha''(t_0) \rangle = \left(\kappa_g(p) - \kappa_g^u(p) \right) \langle u, n(p) \rangle.$$

Como *p* é um ponto regular de $h_u|_D$ temos que $\langle u, n(p) \rangle \neq 0$, donde segue que *p* é um ponto crítico não degenerado de $h_u|_{\partial D}$ se, e somente se, $\kappa_g(p) \neq \kappa_g^u(p)$. Pela orientação dada a ∂D temos que *p* é um ponto crítico do tipo ilha quando $\kappa_g(p) > \kappa_g^u(p)$ e do tipo ponte quando $\kappa_g(p) < \kappa_g^u(p)$.

O Corolário 3.13 pode ser visto como uma versão estereológica da fórmula de Gauss-Bonnet (14).

Corolário 3.13 (Uma versão estereológica para a fórmula de Gauss-Bonnet). Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável $S e u \in \mathbb{S}^2$ um vetor arbitrário. Então a função altura $h_u|_D$ é uma função de Morse, não tem pontos críticos em ∂D e a restrição $h_u|_{\partial D}$ é também uma função de Morse. Em particular temos que

$$\mathcal{X}(D) = \sum_{p \in D: N(p) = \pm u} sign\left(K(p)\right) + (1/2) \sum_{q \in \partial D: n(q) = \pm \tilde{u}} sign\left(\kappa_g(q) - \kappa_g^u(q)\right),$$
(39)

onde sign(·) é a função sinal e \tilde{u} denota a projeção ortogonal normalizada de u em T_pD , para $p \in D$.

Demonstração. Seja $p \in D$ um ponto arbitrário. Notemos que a função altura $h_u|_D(p) = \langle p, u \rangle$ pode ser expressa da seguinte maneira:

$$h_u|_D(p) = \frac{|p|^2 - |p - u|^2 + |u|^2}{2}.$$
(40)

De fato,

$$|p-u|^{2} = \langle p-u, p-u \rangle = \langle p, p \rangle - 2 \langle p, u \rangle + \langle u, u \rangle$$

Para $p \in \partial D$ um ponto arbitrário, a função $h_u|_{\partial D}$ também é expressa por (40).

Por [Mil63, Teorema 6.6, p.36], temos que para quase todo $p \in \mathbb{R}^3$ a função $L_p : S \to \mathbb{R}$, dada por $L_p(q) = |p - q|^2$, não tem pontos críticos degenerados. Como

$$h_u|_D = \frac{L_0(p) - L_u(p) + L_0(u)}{2},$$

então $h_u|_D$ é função de Morse para quase todo $u \in \mathbb{S}^2$. Analogamente, $h_u|_{\partial D}$ é função de Morse para quase todo $u \in \mathbb{S}^2$.

Sejam $p \in \partial D$, $v \in T_pS$ arbitrários, $N : S \to S^2$ a aplicação de Gauss de *S* e $\alpha : I \to D \subset S$ uma curva parametrizada pelo comprimento de arco em *D* tal que $\alpha(s_0) = p \in \alpha'(s_0) = v$. Como

$$d(h_u|_D)_p(v) = \left. \frac{d}{ds} \right|_{s=s_0} h_u|_D(\alpha(s)) = \left. \frac{d}{ds} \right|_{s=s_0} \langle \alpha(s), u \rangle = \langle \alpha'(s_0), u \rangle = \langle v, u \rangle, \tag{41}$$

segue-se que $p \in \partial D$ é um ponto crítico de $h_u|_D$ se, e somente se, $u = \pm N(p)$, pois (41) vale para todo $v \in T_pS$.

Para $p \in \partial D$, temos que $u = \pm N(p)$ se, e somente se, $\langle u, N(\beta(t)) \rangle = \pm 1$, onde $\beta : I' \rightarrow \partial D \subset S$ é uma parametrização pelo comprimento de arco de ∂D tal que $\beta(t_0) = p$. Mas, $\langle u, N(\beta(t)) \rangle = \pm 1$ se, e somente se,

$$0 = \left. \frac{d}{dt} \right|_{t=t_0} \left\langle u, N(\beta(t)) \right\rangle = \left\langle u, dN_p(w) \right\rangle,$$

onde $w = \beta'(t_0)$. Como *u* é arbitrário, segue-se que $dN_p(w) = 0$ para todo $w \in T_p \partial D$, ou seja, $\langle u, N(\beta(t)) \rangle = \pm 1$ se, e somente se, *u* é valor crítico de *N*.

Portanto, p é um ponto crítico de $h_u|_D$ se, e somente se, u é valor crítico de N. Ou seja, $h_u|_D$ não tem pontos críticos em ∂D se, e somente se, u é valor regular de N. Assim, pelo Teorema de Sard [Lim15, Teorema de Sard, p. 359], $h_u|_D$ não tem pontos críticos em ∂D para quase todo $u \in S^2$.

A fórmula (39) para $\mathcal{X}(D)$ é uma consequência direta do Teorema de Poincaré-Hopf generalizado para funções de Morse 3.11 e do Teorema 3.12.

Observação 3.14. *Uma outra maneira de demonstrar que* $h_u|_D e h_u|_{\partial D}$ são funções de Morse para quase todo $u \in \mathbb{S}^2$ é a seguinte. Notemos que $h_u|_D$ é uma função de Morse se, e somente se, u é um valor regular da aplicação de Gauss $N : S \to \mathbb{S}^2$ de S. Assim, pelo Teorema de Sard [Lim15, Teorema de Sard, p. 359], $h_u|_D$ é uma função de Morse para quase todo $u \in \mathbb{S}^2$. Para a função $h_u|_{\partial D}$ é análoga a abordagem.

3.1 Aplicações

A seguir, olharemos para alguns casos particulares do Corolário 3.13. Primeiramente, tomamos $S = \mathbb{R}^2$ e $h_u : \mathbb{R}^2 \to \mathbb{R}$, para $u \in S^1$, a função altura. As curvas de nível neste caso são retas ortogonais a u, as quais tem curvatura nula. Além disso, h_u não tem pontos críticos em \mathbb{R}^2 e a curvatura geodésica é igual à curvatura de uma curva plana. Neste caso, obtemos o seguinte resultado.

Corolário 3.15. Sejam $D \subset \mathbb{R}^2$ um domínio com fronteira e $u \in \mathbb{S}^1$ um vetor arbitrário. Então a restrição da função altura $h_u|_{\partial D}$ é uma função de Morse e

$$\mathcal{X}(D) = (1/2) \sum_{p \in \partial D: n(p) = \pm \tilde{u}} sign(\kappa(p)),$$

onde sign(·) é a função sinal e \tilde{u} denota a projeção ortogonal normalizada de u em T_pD , para $p \in D$.

No caso em que $S = S^2$, temos que as curvas de nível associadas à função altura $h_u : \mathbb{R}^3 \to \mathbb{R}$ são os paralelos; assim, denotando por θ_u , γ_u as coordenadas esféricas relativas a u, como ilustra a Figura 8, temos que a curvatura geodésica de um paralelo é $-\tan \gamma_u$.

Figura 8: Coordenadas esféricas relativas a *u*.

Notemos que $h_u|_{S^2}$ é uma função de Morse com dois pontos críticos, $u \in -u$. Neste caso, obtemos o seguinte resultado.

Corolário 3.16. Sejam $D \subset S^2 \subset \mathbb{R}^3$ um domínio com fronteira e $u \in S^2$ um vetor arbitrário. *Então*

$$\mathcal{X}(D) = (1/2) \sum_{p \in \partial D: n(p) = \pm \tilde{u}} sing \left(\kappa_g(p) + \tan \gamma_u(p) \right) + \# \left(\{u, -u\} \cap D \right),$$

onde # $({u, -u} \cap D)$ é o número de vezes que u ou -u pertencem a D.

Sejam $D \subset S \subset \mathbb{R}^3$ um domínio com fronteira em uma superfície regular orientável $S \subset \mathbb{R}^3$ e $u \in \mathbb{S}^2$. Quando λ varia em \mathbb{R} , os diferentes planos $\pi_{u,\lambda}$ podem ser considerados como planos de "varredura" do \mathbb{R}^3 e (39) pode ser expressa como a seguir, devido ao Teorema 3.12:

$$\mathcal{X}(D) = (I_2 - P_2) + \frac{1}{2}(I_1 - P_1),$$
 (42)

onde I_1 , P_1 denotam o número de "ilhas" e "pontes", respectivamente, observados nas curvas de nível $\pi_{u,\lambda} \cap S$ e I_2 , P_2 denotam o número de "bases" e "topos", respectivamente, observadas no plano de "varredura" $\pi_{u,\lambda}$, que contribuem para a soma $\sum_{p \in Crit(h_u)} ind_p(h_u)$. Para exemplificar, tomamos \mathbb{T}^2 um toro em \mathbb{R}^3 com atlas $\mathcal{A} = \{(\phi, U_1), (\phi, U_2), (\phi, U_3), (\phi, U_4)\}$, onde

$$\phi(u, v) = ((\cos(u) + 2)\cos(v), \sin(u), (\cos(u) + 2)\sin(v)), \qquad (43)$$

$$U_{1} =]0, 2\pi[\times]0, 2\pi[, U_{2} =]\pi, 3\pi[\times]0, 2\pi[$$
$$U_{3} =]0, 2\pi[\times]\pi, 3\pi[, u_{4} =]\pi, 3\pi[\times]\pi, 3\pi[$$

Consideremos $D \subset \mathbb{T}^2$ um domínio com fronteira em \mathbb{T}^2 parametrizado por (43) para $U = [0, 2\pi] \times \left[-\frac{1}{4}, \pi - \frac{1}{4}\right]$, como ilustra a Figura 9.

Figura 9: Toro \mathbb{T}^2 e o domínio $D \subset \mathbb{T}^2$ descritos acima.

Para u = (0, 0, 1) o ponto $p_1^D = (0, 0, 1)$ é do tipo "base" e $p_2^D = (0, 0, 3)$ do tipo "topo".

O ponto

$$p_1^{\partial D} = \left(3\cos\left(-\frac{1}{4}\right), 0, 3\sin\left(-\frac{1}{4}\right)\right)$$

em $\pi_{u,3\sin\left(-\frac{1}{4}\right)} \cap S$ é do tipo "ilha",

$$p_2^{\partial D} = \left(\cos\left(-\frac{1}{4}\right), 0, \sin\left(-\frac{1}{4}\right)\right)$$

em $\pi_{u,\sin\left(-\frac{1}{4}\right)} \cap S$ é do tipo "ponte",

$$p_3^{\partial D} = \left(\cos\left(\pi - \frac{1}{4}\right), 0, \sin\left(\pi - \frac{1}{4}\right) \right)$$

em $\pi_{u,\sin\left(\pi-\frac{1}{4}
ight)}\cap S$ é do tipo "ilha",

$$p_4^{\partial D} = \left(3\cos\left(\pi - \frac{1}{4}\right), 0, 3\sin\left(\pi - \frac{1}{4}\right)\right)$$

em $\pi_{u,3\sin(\pi-\frac{1}{4})} \cap S$ é do tipo "ponte". A Figura 10 ilustra os pontos p_1^D , p_2^D , $p_1^{\partial D}$, $p_2^{\partial D}$, $p_3^{\partial D}$ e $p_4^{\partial D}$ em \mathbb{T}^2 .

Figura 10: Os pontos p_1^D , p_2^D , $p_1^{\partial D}$, $p_2^{\partial D}$, $p_3^{\partial D}$ e $p_4^{\partial D}$ em \mathbb{T}^2 .

Disto temos que $I_1 = 2$, $P_1 = 2$, $I_2 = 1$ e $P_2 = 1$. Logo, por (42), temos que

$$\mathcal{X}(D) = (1-1) + \frac{1}{2}(2-2) = 0$$

BIBLIOGRAFIA

- [AT12] M. Abate and F. Tovena, *Curves and surfaces*, 1st ed., Springer-Verlag Italia, Milão, Italia, 2012. [↑]4, 10, 11, 12, 14, 18, 20, 22, 24, 27, 37
- [BB14] E. Behrends and J. Buescu, *Terá Buffon realmente lançado agulhas?*, Boletim da SPM 71 (2014), 123 –132. ↑1
- [dC14] M. P. do Carmo, *Geometria diferencial de curvas e superfícies*, 6th ed., Sociedade Brasileira de Matemática, Rio de Janeiro, Brasil, 2014. ↑5, 7
- [DeH87] R. T. DeHoff, Use of the disector to estimate the Euler characteristic of three dimensional microstructures, Acta Stereologica (1987). ↑2
- [GANB01] X. Gual-Arnau and J. J. Nuño Ballesteros, A stereological version of the Gauss-Bonnet formula, Geom. Dedicata 84 (2001), no. 1-3, 253–260. MR1825359 ↑iii, v, 3
- [GBNO93] H. J. G. Gundersen, R. W. Boyce, J. R. Nyengaard, and A. Odgaard, *The conneulor: unbiased* estimation of connectivity using physical disectors under projection, Bone 14 (1993), no. 3, 217–222.
 Bone Morphometry 1992 Sixth International Congress Proceedings. [↑]2
 - [Jub09] B. Jubin, A generalized Poincaré-Hopf index theorem, 2009. ³⁴
 - [Lim15] E. L. Lima, Curso de análise vol. 2, 11th ed., Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil, 2015. ²³, 30, 31, 32, 37, 41
 - [Lim16] _____, *Álgebra linear*, 9th ed., Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil, 2016. ¹³
 - [Mil63] J. Milnor, *Morse theory*, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR0163331 ⁴¹
 - [Mor29] M. Morse, Singular points of vector fields under general boundary conditions, Amer. J. Math. 51 (1929), no. 2, 165–178. MR1506710 ³³, 34
 - [MR98] S. Montiel and A. Ros, *Curves and surfaces*, 2nd ed., Real Sociedad Matemática Española, Madrid, Espanha, 1998. ↑27
 - [ON08] J. OHSER and W. Nagel, *The estimation of the Euler-Poincare characteristic from observations on parallel sections*, Journal of Microscopy **184** (2008), 117 –126. ↑2
 - [RdSB09] W. L. Roque, A. C. A. de Souza, and D. X. Barbieri, Característica de Euler-Poincaré aplicada para identificar baixa densidade óssea a partir de imagens tomográficas de vértebras, Revista Brasileira de Reumatologia (2009). [↑]2