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Abstract

This project aims to show initial results for representation theory on Lie algebras.

In particular, we focus on tools necessary to introduce Category O.

As a first step, we develop an introduction to the study of Lie algebras: theorems

on solvable and nilpotent Lie algebras, the Cartan-Killing form, Cartan’s Criteria

and Weyl’s theorem of complete reducibility.

After this introduction we start studying an analogue to Jordan decomposition on

semi-simple Lie algebras in order to achieve an equivalent to Cartan subalgebras,

the so called maximal toral subalgebras, with the aim of achieving root decomposi-

tion on semi-simple Lie algebras.

Some properties of root systems and the Weyl group are presented in an indepen-

dent manner. The construction of a basis for root systems the action of the Weyl

group on such bases as well as the classification of irreducible root systems.

We introduce the universal enveloping algebra as a tool to study representations

on Lie algebras: The Poincaré-Birkhoff-Witt theorem and a first application on the

study of highest weight modules.

Finally, we produce some initial results on category O. Categorical properties of O,

some of its more important objects, and the classification of its irreducible objects

as quotients of Verma modules.

Keywords: abstract-algebra, Lie-algebras, representation-theory
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Introduction

Lie algebras were introduced to study the concept of infinitesimal transformation

by Sophus Lie and Wilhelm Killing at the end of the 1800s, since then, the study of

Lie algebras has developed into its own field, with results used throughout mathe-

matics and physics, notably in quantum mechanics and particle physics.

This project serves as an introduction to all the main basic results present in Lie

algebras with an emphasis on representation theory, serving as a gateway for fur-

ther development on the field. More specifically, we want to produce results so as

to reach a shallow understanding of BGG category O in the following way:

In the first chapter, we will present the construction of Lie algebras from an alge-

braic perspective, the structure of nilpotent, solvable and semi-simple Lie algebras

as well as some properties on the representations of semi-simple Lie algebras, using

[Hum72, chpt 1-6] as the main reference.

In the second chapter, we start studying the abstract Jordan decomposition (an ana-

logue to the Jordan decomposition for operators in finite-dimensional vector spaces)

as well as the study of maximal toral subalgebras (an equivalent structure to Car-

tan subalgebras) in a similar manner to [Hum72, chpt 5-8]. This study allows us

to understand root decomposition, an essential part of the study of semi-simple Lie

algebras.

In the third chapter, we will cover some important aspects of root systems and the

Weyl group in an independent manner, similar to [Hum72, chpt 9-13]. These results

are widely used in the classification of simple Lie algebras as well as in representa-

tion theory.

In the fourth chapter, we will cover the universal enveloping algebra, a funda-

mental tool for the study of representations. As a first application of them, we will

present results for highest weight modules using as reference [Mar09, chpt 10].

In the fifth chapter, we shall introduce the Category O of representations, one of

the most important categories of representations, using as main reference “Repre-

sentations of Semisimple Lie algebras in BGG categoryO” [Hum08]. We will present

some of its categorical properties as well as a classification of its irreducible objects.
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1 Lie Algebras: Basics

Lie theory is a huge field in modern mathematics with applications in quantum me-

chanics, particle physics and to the theory of differential equations, one can refer to

[JGBS66] for some of these applications.

We are going to focus this dissertation on the theory of Lie algebras in an inde-

pendent manner, one can refer to Appendix C for a simplified construction of Lie

algebras from Lie groups. If the reader is unfamiliar with the concept of algebras or

some of their basic properties, we refer them to Appendix A.

In this chapter, we are going to present the basic results on the study of Lie al-

gebras, with a focus on criteria to discern when algebras are nilpotent, solvable or

semi-simple as well as a big result on representation theory, Weyl’s theorem of com-
plete reducibility.

1.1. Lie Algebras: Axiomatic

This section is focused on defining the main language and tools we are going to

use throughout the text, following standard modern notation seen in [Mar09] with

proofs also based on [Hum72, chpt 1&2].

Fix an arbitrary field F.

Definition 1.1.1 A Lie algebra is an F-algebra g with a product (represented by [ , ])
satisfying, for all X,Y and Z ∈ g:

(a) [X,X] = 0 (Alternativity).

(b) [X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi Identity).

A subalgebra is a subspace h of g such that for all X,Y ∈ h we have [X,Y ] ∈ h.
An ideal is a subspace h of g such that for all X ∈ g and Y ∈ h we have [X,Y ] ∈ h.

If F has characteristic different from 2 we can do better and require only anti-

commutativity as an equivalent axiom to alternativity: (a′) [X,Y ] = −[Y ,X].

An important point to make is that Lie algebras are not generally associative, and
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1. Lie Algebras: Basics

that the only ones that are commutative (char F , 2) are trivial in the sense that the

bracket of any two elements is always 0, [X,Y ] = −[Y ,X] = −[X,Y ]⇒ [X,Y ] = 0.

Let End(V ) denote the space of linear transformations from V onto itself (also

called endomorphisms), define [X,Y ] = X · Y − Y ·X as the commutator, where · is
the product given by composition of morphisms, this space with the defined bracket

is a Lie algebra:

(a) [X,X] = X2 −X2 = 0.

(b) [X, [Y ,Z]]+[Y , [Z,X]]+[Z, [X,Y ]] = (XYZ−XZY −YZX+ZYX)+(YZX−YXZ−
ZXY +XZY ) + (ZXY −ZYX −XYZ +YXZ) = 0.

The set of all n × n matrices over any field F is a Lie algebra with the commutator,

denoted by gl(n,F). With respect to the canonical basis {eij : 1 ≤ i, j ≤ n} of gl(n,F)

the Lie bracket has an explicit form: [eij , ekl] = δjkeil − δilekj .
Note that there is no restriction on the dimension of V for End(V ) to be a Lie

algebra. We can extend this to V of arbitrary dimension, denoting the Lie algebra

End(V ) with product given by the commutator by gl(V).

Example 1.1.2 Matrix algebras:

1. Special linear algebra: sl(n,F) = {X ∈ gl(n,F) | Tr(X) = 0}.
sl(n,F) is a vector subspace of gl(n,F) as the kernel of Tr : gl(n,F) → F with
dimsl(n,F) = n2 − 1.
It is also closed under the Lie bracket:

Tr([X,Y ]) = Tr(XY −YX) = Tr(XY )−Tr(YX) = 0,

it follows that sl(n,F) is a Lie subalgebra of gl(n,F)

2. If B : Fn ×Fn→ F is a bilinear form, then the subspace:

oB(n,F) = {X ∈ gl(n,F) |B(Xv,w) +B(v,Xw) = 0 for all v,w ∈ Fn}

is a Lie subalgebra of gl(n).
We shall check that it is closed under the Lie bracket (it is trivially a subspace):

B((XY −YX)v,w) = B(XYv,w)−B(YXv,w) = −B(Y v,Xw) +B(Xv,Yw)

= B(v,YXw)−B(v,XYw) = −B(v, (XY −YX)w).
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1. Lie Algebras: Basics

We shall denote the matrix of this bilinear form with respect to the canonical basis
with the same name as the bilinear form itself, that is: B(v,w) = vTBw.
Doing this allows us to simply write oB(n,F) = {X ∈ gl(n,F) | XTB+BX = 0}.

3. Orthogonal algebra: A notable bilinear form is the inner product, whose matrix
is the identity:

o(n,F) = oI (n,F) = {X ∈ gl(n,F) | XT = −X}

An easy calculation, see for instance [Hum72,p.3], shows that the dimension of this
space depends on the parity of n:

dimo(2n,F) = 2n2 −n, dimo(2n+ 1,F) = 2n2 +n.

4. Symplectic algebra: For algebras with even dimension, another common bilinear
form is the one defined by the matrix

J =

 0n×n In×n
−In×n 0n×n

 .
The algebra induced by this bilinear form is denoted by sp(2n,F) and can be written
explicitly as:

sp(2n,F) = oJ (2n,F) = {X ∈ gl(n,F) | XT J + JX = 0}.

Another simple calculation on matrix blocks can be used to show that the dimension
of sp(2n,F) is equal to 2n2 +n, see [Hum72,p.3].

5. The upper triangular and strictly upper triangular matrices are a Lie algebra.
In fact, for the space spanned by {eij | 1 ≤ i < j ≤ n}:

[eij , ekl] = δjkeil − δilekj .

δjkeil , 0 only if j = k, but that implies i < j = k < l. Analogously δilekl , 0 implies
that k < j. The same is valid for the space spanned by {eij | i ≤ j}.

If F = R or C, then gl(n,F), sl(n,F), o(n,F) and sp(2n,F) are the Lie algebras of the

classic Lie groups with the same name, these being, respectively, the general linear

group, the special linear group, the orthogonal group, and the symplectic group.

See, for instance [Hal04, p.39-41].
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1. Lie Algebras: Basics

Example 1.1.3 Trivial and low-dimensional algebras:

1. For any vector space V , the product [X,Y ] = 0 for anyX,Y ∈ V defines a Lie algebra
structure on V , which is called the trivial or abelian Lie algebra on V .

2. If g is a one-dimensional Lie algebra, through alternativity, it is abelian.

3. For non-trivial g two-dimensional, there is a basis {X,Y } in g such that [X,Y ] = Y .
Let {X0,Y0} be a basis of this two-dimensional Lie Algebra, and [X0,Y0] = aX0+bY0.
Assuming b , 0 we find:[1

b
X0,

a
b
X0 +Y0

]
=

1
b

[X0,Y0] =
a
b
X0 +Y0,

then X = a
bX0 and Y = 1

bX0 + Y0 satisfy the condition. If b = 0, as the algebra is
non-trivial, a , 0, and: [

−1
a
Y0,X0

]
= X0,

therefore, X = −1
aY0 and Y = X0 satisfy the condition.

Definition 1.1.4 Let g be any Lie algebra:

• A derivation of g is a linear transformation D ∈ gl(g) satisfying:

D[X,Y ] = [DX,Y ] + [X,DY ] for all X,Y ∈ g.

• The adjoint of an element X ∈ g is defined as ad(X) ∈ gl(g) by:

ad(X)Y = [X,Y ], Y ∈ g.

• A representation of g in a vector space V is a Lie algebra morphism ρ from g to
gl(V ), meaning:

ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).

Proposition 1.1.5 The adjoint of an element is a derivation and the adjoint representa-
tion ad : X 7→ ad(X) is a representation from g into itself.

Proof: Using the Jacobi identity:

ad(X)[Y ,Z] = [X, [Y ,Z]] = −[Y , [Z,X]]− [Z, [X,Y ]]

= [Y , [X,Z]] + [[X,Y ],Z] = [Y ,ad(X)Z] + [ad(X)Y ,Z].
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1. Lie Algebras: Basics

ad([X,Y ])Z = [[X,Y ],Z] = [X, [Y ,Z]] + [Y , [Z,X]]

= [X, [Y ,Z]]− [Y , [X,Z]] = ad(X)ad(Y )Z − ad(Y )ad(X)Z for all Z ∈ g.

�

With these tools defined, we can now start to deepen our study of the structure

of Lie algebras. For this purpose, we will define two series of ideals that are in-

dispensable to the definition of the classic types of Lie algebras. Before that, some

clarification on notation:

Given subsets h and k of a Lie algebra g, let [h,k] := {[H,K] ∈ g | H ∈ h,K ∈ k}. Note

that if g and k are subspaces then so is [h,k], furthermore, [h,k] = [k,h].

Definition 1.1.6 The lower central series is defined recursively as:g
1 = g,

gn = [g,gn−1].

The derived series is also defined recursively:g
(1) = g,

g(n) = [g(n−1),g(n−1)].

Proposition 1.1.7 Let g be a Lie algebra, then:

(a) g ⊃ g2 ⊃ · · · ⊃ gn ⊃ · · · , and g ⊃ g(2) ⊃ · · · ⊃ g(n) ⊃ · · · .

(b) All members of these series are ideals of g.

(c) For all n, g(n) ⊂ gn.

11



1. Lie Algebras: Basics

Proof:

(a) For the case of the lower central series, we shall consider n > 2 (the case when

n = 2 follows directly from g being a Lie algebra). Let X ∈ gn+1 with X = [Y ,Z]

for Y ∈ gn and Z ∈ g. By induction Y ∈ gn−1, therefore X ∈ [gn−1,g] = gn.

For the case of the derived series, we also proceed by induction, the case

g(2) = [g,g] ⊂ g is direct, assuming g(n) ⊂ g(n+1) for X ∈ g(n+1) with X = [Y ,Z]

for Y ,Z ∈ g(n), then since Y ,Z ∈ g(n−1), the result follows.

(b) For the lower central series, the result is direct from the previous result, [g,gn] =

gn+1 ⊂ gn. For the derived series, we will use induction. The base case g(1) = g is

trivially an ideal of g. Assume that g(n) is an ideal of g, let X ∈ g, and Y ∈ g(n+1).

As Y can be written as [Z,W ] for some Z,W ∈ g(n), then:

[X,Y ] = [X, [Z,W ]] = −[Z, [W,X]]− [W, [X,Z]].

By induction [W,X] = −[X,W ] ∈ g(n), therefore, [X,Y ] ∈ g(n+1) as the sum of

two elements in g(n+1), proving that it is an ideal.

(c) Since g(n) ⊂ g, the results follows from induction on n. In fact, if g(n) ⊂ gn :

g(n+1) = [g(n),g(n)] ⊂ [g,gn] = gn+1.

�

With these ideal series being defined, we can finally start to study the different types

of Lie algebras which are naturally more interesting:

Definition 1.1.8 (a) An algebra is called nilpotent if gn = 0 for some n.

(b) An algebra is called solvable if g(n) = 0 for some n.

(c) An algebra is semi-simple if it has no non-zero solvable ideals.

(d) An algebra is simple if it has no non-zero proper ideals.

1.2. Nilpotent and Solvable Lie Algebras

This first section of results focuses on finite-dimensional nilpotent and solvable al-

gebras with an emphasis on matrix algebras. The results here are self-contained and
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1. Lie Algebras: Basics

play an important role in representation theory through a characterization of these

first algebras. Proofs presented here are based on [Hum72, chpt 3&4].

In this section, we fix a finite-dimensional vector space V over an arbitrary field F.

Definition 1.2.1 An operator X ∈ gl(V ) is nilpotent if Xn = 0 for a positive integer n.
An element X ∈ g, where g is any Lie algebra is ad-nilpotent if ad(X)n = 0 for some
positive integer n.

Proposition 1.2.2 If X ∈ gl(V ) is nilpotent then X is ad-nilpotent.

Proof: Let n be such that Xn = 0. Additionally, let LX ,RX ∈ gl(gl(V )) be the left

and right multiplication by X respectively, that is, LX(Y ) = XY and RX(Y ) = YX, for

Y ∈ gl(V ), note that:

LnX = RnX = 0, ad(X) = LX −RX , and LXRXY = XYX = RXLXY for all Y ∈ gl(V ).

The result follows from the binomial theorem for commuting operators:

ad(X)2n = (LX −RX)2n =
2n∑
k=0

(−1)2n−k
(
2n
k

)
LkXR

2n−k
X ,

which is 0 term by term because R2n−k
x = 0 for k < n, and Lkx = 0 if k ≥ n. �

Theorem 1.2.3 (Engel’s Lemma) Let g be a subalgebra of gl(V ), if g consists of nilpo-
tent endomorphisms and V , 0, then there exists a non-zero vector v ∈ V for which
Xv = 0 for all X ∈ g.

Proof: We will proceed by induction on the dimension of g, the case when dimg = 1

with {X} as a basis is satisfied by taking any vector v , 0 and considering the smallest

value of n such that Xnv = 0, then X(Xn−1v) = 0 and Xn−1v , 0.

If h is any proper and non-trivial subalgebra of g, since ad(H) is nilpotent for any

H ∈ hwe find that it also acts nilpotently on the quotient space g/hwith well defined

action. By the induction hypothesis there exists some X0 ∈ g/h such that [h,X0] ∈ h,

moreover, [X0,X0] = 0, from which h⊕FX0 is a subalgebra of g.

Assuming dimg ≥ 2, we can repeat the previous argument to construct a subalgebra

h and X0 ∈ g in such a way that g = h⊕FX0 and [{X0},h] ⊆ h. This h is in fact an ideal

of g: [g,h] = [h,h] + [{X0},h] ⊆ h.

Again by induction, W = {v ∈ V | Hv = 0 for all H ∈ h} is non-zero as dimh < dimg,

13



1. Lie Algebras: Basics

but since h is an ideal, gW ⊆W , in fact:

Y (Xw) = XYw − [X,Y ]w = 0 for all X ∈ g, Y ∈ h, and w ∈W.

Finally, as X0 acts on W and is nilpotent, there exists a non-zero vector v ∈W such

that X0v = 0, therefore Xv = 0 for any X ∈ g. �

When studying the properties of nilpotent and solvable Lie algebras, the kernel of

the adjoint representation plays an important role as a tool to move from matrix

algebras to general Lie algebras.

Definition 1.2.4 Let g be a Lie algebra, we define the center of g as the ideal given by:

z(g) := {Z ∈ g | [Z,X] = 0 for all X ∈ g}.

Theorem 1.2.5 (Engel’s Theorem) If g is a finite-dimensional Lie algebra and all ele-
ments of g are ad-nilpotent, then g is nilpotent.

Proof: The image of the adjoint representation satisfies the conditions of Theorem

1.2.3 in gl(g), implying that there exists non-zero X ∈ g such that [X,g] = 0, therefore

z(g) , 0. Now g/z(g) consists of ad-nilpotent elements and has smaller dimension

than g, therefore it is a nilpotent algebra by induction on the dimension of g.

But if g/z(g) is nilpotent then g is also nilpotent. In fact, if g/(z(g)) is nilpotent, then

gn ⊂ z(g) for some n, but that implies that gn+1 ⊂ [g,z(g)] = 0. �

A similar result to Engel’s Lemma (Theorem 1.2.3) is valid for solvable Lie algebras

under more strict conditions, in fact:

Theorem 1.2.6 (Lie’s Theorem) Let V be a non-trivial finite-dimensional vector space
over an algebraically closed field of characteristic 0, and g a solvable Lie subalgebra of
gl(V ). There exists a linear form λ : g→ F and a non-zero v ∈ V such that Xv = λ(X)v

for all X ∈ g.

Proof: The proof of this theorem follows the same steps as the proof of Engel’s

Lemma (Theorem 1.2.3).

1. Locate an ideal h of g with co-dimension one.

2. Common eigenvectors exist for h by induction.

3. g stabilizes the space consisting of these eigenvectors, if W is such space, this

means that Xw ∈W for any X ∈ g and w ∈W .

14



1. Lie Algebras: Basics

4. Find an eigenvector in this space for a single X0 ∈ g such that g = h⊕FX0.

1. Since g is solvable then g(2) = [g,g] , g, therefore any co-dimension one vector

space containing g(2) is an ideal, fix one of these as h.

2. Proceeding by induction on dimg, if dimg = 0, the result is trivial.

Since dimh = dimg−1 < dimg, we assume the existence of a non-zero common

eigenspace, that is, some λ ∈ h∗ such that

W := {v ∈ V | Xv = λ(X)v for all X ∈ h} , 0.

3. To prove that g stabilizes W , let w ∈W , X ∈ g and Y ∈ h arbitrary. Then

YXw = XYw − [X,Y ]w = λ(Y )Xw −λ([X,Y ])w.

Thus λ([X,Y ]) = 0 implies our desired result.

Let n be the largest integer such that {w,Xw, · · · ,Xnw} is linearly independent,

and Vi spanned by {Xjw | 0 ≤ j ≤ i}. VN = Vn for N > n and dimVn = n+ 1.

h stabilizes each Vi . By induction, the base case being Yw ∈W for all Y ∈ h is

trivial.

YXiw = YXXi−1w = XYXi−1w − [X,Y ]Xi−1w = (XY − [X,Y ])Xi−1w ∈ Vi .

From this we can see that TrVn(Y ) = nλ(Y ), but this is valid for the special

element in h of the form [X,Y ]. Since Tr([X,Y ]) = Tr(XY ) − Tr(YX) = 0, then

nλ([X,Y ]) = 0. As we assumed characteristic 0, this forces λ[X,Y ] = 0.

4. Letting X0 ∈ g such that g = h⊕FX0, as X0 :W →W , there exists an eigenvector

v ∈W for X0. Extend λ : h→ F to include X0 in its domain and define λ(X0) as

the eigenvalue of X0.

�

Example 1.2.7 The condition that the field be of characteristic 0 is in fact necessary.
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1. Lie Algebras: Basics

Consider for instance F to be any field of characteristic p, and the p × p matrices:

X =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0


, Y =



0 0 0 · · · 0

0 1 0 · · · 0

0 0 2 · · · 0
...

...
...
. . .

...

0 0 0 · · · p − 1


,

seeing as:

XY =



0 1 0 · · · 0

0 0 2 · · · 0
...

...
...
. . .

...

0 0 0 · · · p − 1

0 0 0 · · · 0


, YX =



0 0 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · p − 2

p − 1 0 0 · · · 0


.

We can see that [X,Y ] = X and therefore {X,Y } span a solvable Lie subalgebra of

gl(p,F). X and Y have no common eigenvectors as all eigenvectors of Y are multiples

of canonical basis vectors which are not eigenvectors of X.

Remark 1.2.8 Both previous results (Engel’s Theorem and Lie’s Theorem) can be used to
classify all matrix nilpotent and solvable algebras. Although such classification is very
interesting by its nature, it provides us no tools for our goal to study representations of
semi-simple Lie algebras so it will not be covered in this thesis.

1.3. Cartan’s Criteria

In this section we will consider V to be an n-dimensional vector space over an alge-

braically closed field F of characteristic 0. The purpose of this section is to reach a

criteria for an algebra to be semi-simple using a well known bilinear form, and to

characterize semi-simple Lie algebras as a direct sum of simple algebras. The results

presented here are based on [Hum72, sec 4.3-4.4].

These results make heavy use of Jordan Decomposition of operators on finite-

dimensional vector spaces and the realization of its terms as polynomials applied to

the operator, we refer readers to Appendix B or [Hum72, sec 4.2] if they are unfa-

miliar with such results.

Proposition 1.3.1 If X ∈ gl(V ) is such that its Jordan decomposition (Proposition B.0.1)
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is X = S+N , then ad(X) = ad(S)+ad(N ) is the Jordan decomposition of adX in gl(gl(V )).

Proof: Let {eij} be a basis of gl(V ) so that S = diag{λi} in this basis, then [S,eij] =

(λi −λj)eij and ad(S) is semi-simple (diagonalizable). If N is nilpotent then ad(N )

is nilpotent (Proposition 1.2.2). Since ad is a representation, then:

[ad(S),ad(N )]gl(g) = ad([S,N ]g) = 0.

The result follows from uniqueness of the Jordan Decomposition in gl(gl(V )). �

Theorem 1.3.2 (Cartan’s Lemma) Let A ⊂ B be two subspaces of gl(V ), and set M =

{X ∈ gl(V ) | [X,B] ⊂ A}. If X ∈ M is such that Tr(XY ) = 0 for all Y ∈ M, then X is
nilpotent.

Proof: This proof consists mostly of technicalities on proving that specific matrices

are present in M.

Let X = S +N be the Jordan decomposition of X, fix a basis {v1, · · · ,vn} in which

S = diag(a1, · · · , am). We want to prove that a1 = · · · = am = 0 since in that case S = 0

and X is nilpotent.

Let E be the subspace of F generated by {ai | 1 ≤ i ≤ m} over Q. Since we are

assuming char F = 0, it is enough to show that E = 0, or equivalently E∗ = 0.

Let f ∈ E∗ and Y = diag(f (a1), · · · , f (am)). If {eij} is the corresponding basis of gl(V ),

then ad(S)eij = (ai − aj)eij and ad(Y )eij = (f (ai)− f (aj))eij . Now let r(x) ∈ F[X] be the

polynomial such that r(ai−aj) = f (ai)−f (aj), the existence of which follows from the

Lagrange polynomial construction and linearity, then ad(Y ) = r(ad(S)). Now ad(S) is

the semi-simple part of ad(X), so it can be written as a polynomial in ad(X) without

constant term by (Proposition B.0.1(b)) and therefore ad(Y ), as a polynomial in S,

maps B to A, proving that Y is in M. Now

Tr(XY ) =
m∑
j=1

ajf (aj) = 0⇒
m∑
j=1

f (aj)
2 = 0.

Since we restricted ourselves to Q, this implies that f (aj) = 0 for all j and therefore

f = 0. Since f is arbitrary then we find E∗ = 0. �

This lemma, technical and apparently not very useful is essential to one of the most

important facts about Lie algebras, as a tool on the characterization of semi-simple

Lie algebras. In fact:

Theorem 1.3.3 (Cartan’s Criterion) Let g be a subalgebra of gl(V ). If Tr(XY ) = 0 for

17
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all X ∈ [g,g] and Y ∈ g, then g is solvable.

Proof: Let A = [g,g] and B = g. The hypothesis shows that Tr(XY ) = 0 for all X ∈ A,

and Y ∈ B. We need a stronger statement to use Cartan’s lemma (Theorem 1.3.2):

For all X ∈ A and Y ∈M it follows that Tr(XY ) = 0, whereM = {X ∈ gl(V )|[X,B] ⊂ A}.
Note that Tr([X,Y ]Z) = Tr(X[Y ,Z]) for all X,Y ,Z ∈ gl(V ), since:

Tr(XYZ −YXZ) = Tr(XYZ)−Tr(YXZ) = Tr(XYZ)−Tr(Y (XZ)) (1.1)

= Tr(XYZ −XZY ) = Tr(X[Y ,Z]). (1.2)

Let [X,Y ] ∈ A with X,Y ∈ g, and Z ∈ M, then: Tr([X,Y ]Z) = Tr(X[Y ,Z]) = 0 since

[Y ,Z] ∈ A and X ∈ B. Therefore by Theorem 1.3.2 every element in [g,g] is nilpotent,

which implies that [g,g] is a nilpotent algebra. Since g(n) ⊂ [g,g]n−1 = 0 for some n,

we conclude that g is solvable. �

This in turn allows us to classify algebras with respect to the trace form in its adjoint

representation, in fact:

Corollary 1.3.4 Let g be any finite-dimensional Lie algebra over F. If Tr(ad(X)ad(Y )) =

0 for all X ∈ [g,g] and Y ∈ g, then g is solvable.

Proof: Using the previous theorem, we know that adg ' g/ kerad is solvable, since

kerad = z(g) is solvable, then g is solvable. �

With this corollary in mind, we are able to define a natural bilinear form on finite-

dimensional Lie algebras, the Cartan-Killing form.

Definition 1.3.5 Let g be any finite-dimensional Lie algebra over F. The bilinear form
κ : g× g→ F defined as κ(X,Y ) = Tr(ad(X)ad(Y )) is called the Cartan-Killing form of g.

Lemma 1.3.6 κ is symmetric, and associative, in the sense that: κ(X, [Y ,Z]) = κ([X,Y ],Z).
For any ideal h of g, its restriction to h× h is equal to the Cartan-Killing form of h.
Furthermore, its radical Rad κ = {X ∈ g | κ(X,Y ) = 0 for all Y ∈ g} is an ideal of g.

Proof: Since Tr(ad(X)Tr(Y )) = Tr(ad(Y )ad(X)), the symmetry follows.

Associativity follows from (1.1) and (1.2) on the proof of Theorem 1.3.3.

If h is an ideal, ad(X)ad(Y )|h = ad(X)|had(Y )|h. Therefore, since the trace of an en-

domorphism is equal to the trace of this endomorphism restricted to its image, the

result follows.

Finally, if Y ∈ g andX ∈ Rad κ then, through associativity κ([X,Y ],Z) = κ(X, [Y ,Z]) =

0 for any Z ∈ g. This proves that [X,Y ] ∈ Rad κ and that Rad κ is an ideal. �
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With this in mind we can make the first step to classify semi-simple finite dimen-

sional Lie algebras.

Theorem 1.3.7 Let g be a finite-dimensional Lie algebra over F. Then the following
statements are equivalent:

(a) g has no non-zero abelian ideals.

(b) g is semi-simple (has no non-zero solvable ideals).

(c) The Killing form κ(X,Y ) = Tr(ad(X)ad(Y )) is non-degenerate.

(d) g decomposes uniquely as a direct sum of simple ideals.

Proof:
(a)⇒ (b). Let h be a solvable ideal of g and n minimum such that h(n) = 0, then h(n−1)

is an abelian subalgebra of g, but it is also an ideal:

Lemma 1.3.8 If h is an ideal of g, then h(k) is an ideal of g for all k.

Proof: By induction, the basis case k = 1 being the hypothesis, let [X,Y ] ∈ h(n) with

X,Y ∈ h(n−1) and Z ∈ g, then [Z, [X,Y ]] = [[Y ,Z],X] + [[Z,X],Y ].

Using the induction hypothesis we know that [Y ,Z], [Z,X] ∈ h(n−1), knowing that

X,Y ∈ h(n−1) we find [Z, [X,Y ]] ∈ [h(n−1),h(n−1)] = h(n). �

(b) ⇒ (c). let h = Rad κ, since κ(X,Y ) = 0 for all X ∈ h and Y ∈ g (in particular

for Y ∈ [h,h]), then h is a solvable ideal of g by Cartan’s Criterion (Corollary 1.3.4).

Therefore, if κ is degenerate, then g has solvable ideals.

(c)⇒ (d). Given an ideal h, we define h⊥ = {X ∈ g | κ(X,Y ) = 0 for all Y ∈ h}, since κ

is non-degenerate we have g = h⊕ h⊥. h⊥ is in fact an ideal of g, given X ∈ h⊥ and

Z ∈ g then for all H ∈ h we get κ([X,Z],H) = κ(X, [H,Y ]) = 0 since h is an ideal.

Existence: If g is simple, then g is the only non-trivial ideal, and the result follows.

Otherwise, g has a proper ideal h, and therefore g = h⊕h⊥. As h⊥ is a non-zero ideal

of g, the result follows by doing the same argument for h and h⊥ (see Lemma 1.3.6).

Uniqueness: Assume the existence of a decomposition g =
⊕

gi , and let h be any

simple ideal of g. In this case, [g,h] =
⊕

[gi ,h] and [g,h] = h is simple and therefore

all terms are 0 except one, proving that h = gj for some j.

(d)⇒ (a). Let g =
⊕

i∈I gi be the decomposition of g in simple ideals, then let h be

any ideal of g, then [g,h] =
⊕

i∈I [gi ,h]. For any specific i, [gi ,h] is an ideal of gi ,

therefore it should be 0 or gi , implying that h is a sum of gi where i is running on a

subset of I , since all gi are simple, h cannot be abelian. �
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1.4. Weyl’s Theorem

Weyl’s Theorem of complete reducibility allows us to define a similar decomposition

to the decomposition of semi-simple Lie algebras as simple ideals, not for the alge-

bras themselves but for their representations. These results are based on [Hum72,

chpt 6].

In this section F will be an algebraically closed field of characteristic 0 and g will be

an n-dimensional Lie algebra over F.

g-Modules

In order to set an algebraic structure for representations, we think of them not as

algebra morphisms but rather as vector spaces with an action of the represented

algebra. This structure allows us to talk about natural compositions, reducibility,

sub-structures and other useful algebraic properties.

Definition 1.4.1 A g-module is a vector space V together with an operator · : g×V → V

in such a way that, for all X,Y ∈ g and v,w ∈ V :

(a) X · (v +w) = X · v +X ·w.

(b) (X +Y ) · v = X · v +Y · v.

(c) [X,Y ] · v = X · (Y · v)−Y · (X · v).

Proposition 1.4.2 Every g-module (V , ·) defines a representation and every representa-
tion ρ defines a g-module in such a way that a · v = ρ(a)v for every a ∈ g and v ∈ V .

Proof: Given V a g-module, for a ∈ g define ρ(a) ∈ gl(V ) such that ρ(a) : v 7→ a · v, it

is in gl(V ) if and only if the action satisfies (a), it is a linear morphism if and only if

(b) is satisfied and it satisfies ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X) if and only if (c). �

Remark 1.4.3 The use of the word “module” here is not arbitrary, the universal envelop-
ing algebra introduced in Chapter 4 allows us to speak of g-modules as modules in the
more usual sense.

Proposition 1.4.4 Let V and W be g-modules, and X ∈ g arbitrary, then the following
are g-modules:

(a) V ⊕W with the action X · (v +w) = X · v +X ·w.
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(b) V ∗ with the action X · f : v 7→ −f (X · v).

(c) V ⊗W with the action X · (v ⊗w) = (X · v)⊗w+ v ⊗ (X ·w).

(d) If W ⊂ V , then V /W with X · v = X · v.

(e) HomF(V ,W ) with the action X · f : v 7→ X · f (v)− f (X · v).

Remark 1.4.5 All of these are compatible with each other, for example, if W = F on (e)

we get the same result as (b) since X · f (v) = 0 (actions on the field are trivial).

Some basic and needed definitions on the algebraic structure of g-modules are

given below, we shall omit the product to simplify notation:

Definition 1.4.6 A sub-module of a module V is a subspace W of V such that gW ⊂W .
A linear transformation T between modules V and W is said to be a homomorphism of
g-modules if T (Xv) = XT (v) for any X ∈ g.

Proposition 1.4.7 Let T : V →W be a homomorphism of g-modules, then kerT is a sub
g-module of V .

Proof: kerT is a subspace of V , now for any X ∈ g and v ∈ kerT

T (Xv) = XT (v) = X0 = 0.

Therefore Xv ∈ kerT and the proof is done. �

Definition 1.4.8 Regarding the sub-structure of a particular g-module V :
V is said to be irreducible if it has no proper and non-trivial sub-modules.
V is said to be indecomposable if it cannot be decomposed as a direct sum of two of
its proper sub-modules, that is if V = M ⊕N for M and N sub-modules then M = 0 or
N = 0.
V is said to be reducible if it is not irreducible.

Initial Results on Representations

Lemma 1.4.9 Let ρ : g→ gl(V ) be a representation of a finite dimensional semi-simple
Lie algebra g, then ρ(g) ⊂ sl(V ).

Proof: As g is semi-simple, [g,g] =
⊕

[g,gi] = g by simplicity.

Now since g = [g,g], we can represent an element of g by [X,Y ] and therefore Tr(ρ[X,Y ]) =

Tr(ρ(X)ρ(Y )− ρ(Y )ρ(X)) = 0. In particular, if V is one-dimensional then ρ(g) = 0 �
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Lemma 1.4.10 (Schur’s Lemma) Let V be an irreducible finite-dimensional g-module
over an algebraically closed field F, and ρ : g→ gl(V ) be the correspondent representation.
The only endomorphism that commutes with ρ(g) are the scalars

Proof: If T is a non-trivial endomorphism that commutes with ρ(g), then T is a

homomorphism of modules, and therefore its kernel must be 0 since it is a sub-

module of V .

We also know that T −λI commutes with ρ(g) for all λ ∈ F, therefore T −λI is either

0 or an isomorphism. Since the field is algebraically closed, T has an eigenvalue,

and in that case the kernel cannot be 0, therefore T −λI = 0⇒ T = λI for some λ. �

We will proceed to introduce the idea of a special element in gl(V ) with respect to a

g-module V , classically called the Casimir element.

Let β : g × g→ F be any non-degenerate form satisfying β(X, [Y ,Z]) = β([X,Y ],Z)

(associativity). By non-degeneracy, every basis A = {X1, · · · ,Xn} of g has a dual basis

B = {Y1, · · · ,Yn} with respect to β, that is β(Xi ,Yj) = δij .

For any X ∈ g, setting [X,Xi] =
∑
j aijXj and [X,Yi] =

∑
j bijYj , we find:

aik =
n∑
j=1

aijδjk =
n∑
j=1

aijβ(Xj ,Yk) = β([X,Xi],Yk) = −β(Xi , [X,Yk]) = −bki .

Now, if ρ : g → gl(V ) is a one-to-one representation of a semi-simple g, then the

trace-form β(X,Y ) = Tr(ρ(X)ρ(Y )) is non-degenerate since ρ(g) is isomorphic to g

and Rad β is an ideal of g.

Define cρ ∈ gl(V ) as cρ =
∑n
i=1ρ(Xi)ρ(Yi), the Casimir element of ρ. Note that

Tr(cρ) =
∑n
i=1 Tr(ρ(Xi)ρ(Yi)) =

∑n
i=1β(Xi ,Yi) = n = dimg.

One of the important properties of cρ is that it commutes with ρ(g). To simplify

the proof of this statement, let Xi = ρ(Xi):

Xcρ − cρX =
n∑
i=1

XXiYi −XiYiX =
n∑
i=1

XXiYi −XiXYi +XiXYi −XiYiX

=
n∑
i=1

[X,Xi]Yi +Xi[X,Yi] =
n∑

i,j=1

aijXjYi +
n∑

i,j=1

bijXiYj = 0.

In case of a representation that is not one-to-one, we can consider another Lie

algebra g′ = g/ kerρ and a new representation ρ′ : g′ → gl(V ) that satisfies the given

conditions. cρ′ still commutes with ρ(g) because ρ(g) = ρ′(g′). With this discussion,

we can summarize the properties of the Casimir element of a representation:
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Proposition 1.4.11 (Casimir Element) If g is semi-simple and ρ : g→ gl(V ) is a rep-
resentation with V finite-dimensional, then there exists an element cρ ∈ gl(V ) that com-
mutes with ρ(g) and has non-zero trace. Moreover, if ρ is irreducible, then cρ acts as a
scalar (Schur’s Lemma).

Weyl’s Theorem of Irreducibility

Theorem 1.4.12 Let V be a finite-dimensional g-module, where g is semi-simple. Every
proper sub g-module W ⊂ V admits a sub g-module W ′ ⊂ V such that V =W ⊕W ′.

Proof: Let ρ : g → gl(V ) be the induced representation on V and cρ be one of its

Casimir elements. This proof proceeds in several cases and the use of induction.

If W is an irreducible sub g-module of V with co-dimension one, then V /W is a

g-module of dimension one. g being semi-simple, gV ⊂W and cρ is a g-module ho-

momorphism. kercρ is a module with kercρ , V , since Tr(cρ) , 0. Finally cρ : V →W

(cρ being in the span of ρ(g)2) and acts as a scalar inW by Schur’s Lemma, therefore,

kercρ is the desired complement to W .

If W is a reducible sub-module of V with co-dimension one, let W ′ ⊂W be a sub-

module. V /W ′ is a sub g-module of W/W ′ with co-dimension one, by induction, it

has a one-dimensional sub-module W/W ′ such that V /W ′ =W/W ′ ⊕W/W ′.

NowW ′ ⊆W with co-dimension one, so induction provides a one-dimensional sub-

module M of W such that W =W ′ ⊕M, it follows that V =W ⊕M.

Now let W be any sub-module, consider H = Hom(V ,W ) viewed as a g-module,

and let V be the subspace of H consisting of maps whose restriction to W is a scalar,

letting Va = {f ∈ H | f (w) = a ·w for all w ∈W } then V =
⋃
a∈FVa. LetW be the ones

whose restriction to W are 0, that is W = V0 . These are both sub-modules of H

and clearly W ⊂ V is a subspace of co-dimension one (since its complement is de-

termined by a scalar). To prove the fact that they are sub-modules, let f ∈ V , w ∈W
and X ∈ g, then:

(Xf )(w) = X(f (w))− f (Xw) = X(a ·w)− a · (Xv) = 0.

Therefore Xf ∈W , andW has a complement in V , let this complement be spanned

by h ∈ V . By Lemma 1.4.10, g acts on h trivially and therefore (Xh)(v) = 0⇒ X(h(v))−
h(Xv) = 0, meaning that h is a module homomorphism. Finally, as h sends V into W

and acts as a scalar in W , then V =W ⊕kerh. �
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2 Root Decomposition

This chapter presents the main results on the study of semi-simple Lie algebras

from an algebraic perspective, providing results for the root decomposition of Lie

Algebras and reaching the structure that leads to their classification in Chapter 3,

the same approach can be found in [Hum72, sec 5.4 & chpt 8].

In this chapter, we fix an algebraic closed field F of characteristic 0 and let g be a

finite-dimensional Lie algebra over F.

2.1. Abstract Jordan Decomposition

There is a natural way to extend the Jordan decomposition of finite-dimensional

operators to a given semi-simple Lie algebra by the adjoint representation, the main

idea is proving the existence of elements in a Lie algebra such that their adjoint

satisfies the conditions of the decomposition.

Lemma 2.1.1 Every derivation in a semi-simple Lie algebra is inner, meaning that if D
is a derivation, there exists Y ∈ g such that D = ad(Y ).

Proof: Given D a derivation, the linear form in g∗ given by f (X) = Tr(D ad(X)) has a

dual element Y ∈ g in such a way that κ(X,Y ) = f (X). We shall prove thatD = ad(Y ).

Given the element E =D − ad(Y ), we have Tr(Ead(X)) = 0 for any X ∈ g. Now taking

X,Z ∈ g arbitrary

[E,ad(X)]Z = E(ad(X)Z )− ad(X)EZ = E[X,Z]− [X,EZ] = [EX,Z] = ad(EX)Z,

implying that:

κ(EX,Z) = Tr(ad(EX)ad(Z)) = Tr([E,ad(X)]ad(Z))

= Tr(Ead(X)ad(Z)− ad(X)Ead(Z)) = Tr(Ead[X,Z])

= 0.

As Z is arbitrary, EX = 0 for any X, so E = 0. Finally D = ad(Y ). �
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Lemma 2.1.2 [Mar09, p.77] If D is a derivation and λ,µ ∈ F then for every X,Y ∈ g:

(D − (λ+µ)I)n[X,Y ] =
n∑
i=0

(
n
i

)
[(D −λI)n−iX, (D −µI)iY ]. (2.1)

Corollary 2.1.3 On an algebraically closed field, ifD = S+N is the Jordan decomposition
of a derivation, then S and N are derivations.

Proof: Let g =
⊕
α∈F

gα be the generalized eigenspace decomposition of gwith respect

to D, (2.1) shows that [gα,gβ] ⊂ gα+β , and therefore if X ∈ gα and Y ∈ gβ then:

S[X,Y ] = (α + β)[X,Y ] = α[X,Y ] + β[X,Y ] = [SX,Y ] + [X,SY ].

Therefore S is a derivation since g is the sum of eigenspaces. Finally N = D − S is a

derivation. �

Proposition 2.1.4 For every X ∈ g there exists unique S,N ∈ g satisfying the following
conditions:

(a) X = S +N .

(b) ad(S) is diagonizable and ad(N ) is nilpotent.

(c) [S,N ] = 0.

Such a decomposition will be called abstract Jordan decomposition, S will be called
the semi-simple part of X and N will be called the nilpotent part.

Proof: Since ad(X) is a derivation, its semi-simple part and nilpotent part are deriva-

tions and therefore are adjoints of elements in g, let those elements be S and N re-

spectively, ad(X) = ad(S) + ad(N ).

Since g is semi-simple, the adjoint representation is one-to-one (its kernel is z(g) =

0) and therefore ad(X) = ad(S +N )⇒ X = S +N .

Finally, as [ad(S),ad(N )] = 0, ad([S,N ]) = 0 and therefore [S,N ] = 0. �

Proposition 2.1.5 Let g be a semi-simple Lie algebra and ϕ : g→ gl(V ) be a representa-
tion. If X ∈ g has Abstract Jordan Decomposition X = S +N , then the Jordan Decompo-
sition of ϕ(X) is ϕ(X) = ϕ(S) +ϕ(N ).
In particular the representation of any semi-simple element is semi-simple and of every
nilpotent element is nilpotent. See [Hum72, p.29-30].
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2.2. Toral Subalgebras

The purpose of this section is to use the results from the previous section to con-

struct a subalgebra of semi-simple elements. When considering the joint eigenspace

decomposition with respect to the adjoint of these elements, one obtains exactly the

structure of root systems that allows us to classify semi-simple Lie algebras. This

approach is based on [Hum72, sec 8.1].

Definition 2.2.1 (Toral Subalgebras) A subalgebra of a semi-simple Lie algebra that
consists only of semi-simple elements (with respect to the abstract Jordan Decomposition)
is called a toral subalgebra.

Remark 2.2.2 We must note the deviation from standard literature, normally, root de-
composition is done through the introduction of Cartan subalgebras.
Humphreys proved the equivalence of maximal toral subalgebras and Cartan subalgebras
over fields of characteristic 0 on [Hum72, p.80], we chose to use toral subalgebras instead
as it allows us to mantain our algebraic focus.

The existence of toral subalgebras on our settings follows directly from Engel’s The-

orem (Theorem 1.2.5) and the abstract Jordan decomposition (Proposition 2.1.4).

If there were no semi-simple elements on g, then all elements in g would be ad-

nilpotent, and therefore g would be a nilpotent algebra, which cannot be semi-

simple.

Proposition 2.2.3 If h ⊂ g is a toral subalgebra, then h is abelian.

Proof: We shall prove that ad(X)|h = 0 for any X ∈ h. If this is not the case, since X

is diagonalizable, there exists an eigenvector H of ad(X)|h with non-zero eigenvalue

α. But in that case ad(X)H = αH ⇒ ad(H)X = −αH ⇒ ad(H)2X = 0. Meaning that

ad(H)X is an eigenvector of ad(H) with eigenvalue 0.

On the other hand, ad(H) is diagonalizable, therefore there is a basis {Yi} ⊂ h of

eigenvectors. X =
∑
βiYi in this basis, applying ad(H) to this relation we see that

ad(H)X is a sum of non-zero eigenvectors or 0, contradicting the fact that ad(H)X is

an eigenvector with eigenvalue 0 or the fact that H , 0. �

Proposition 2.2.4 If h is a maximal toral subalgebra (with respect to inclusion), then it
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is possible to decompose g with respect to h∗, g =
⊕
α∈h∗

gα where

gα = {X ∈ g|[H,X] = α(H)X for all H ∈ h}.

Then these spaces satisfy [gα,gβ] ⊂ gα+β for any α,β ∈ h∗ and moreover, if α + β , 0 then
κ(gα,gβ) = 0.

Proof: Since all elements of ad(h) are commuting semi-simple endomorphisms, then

they are simultaneously diagonalizable with respect to a basis of g, in this case we

can do the decomposition:

g =
⊕
α∈h∗

gα.

Now fix X ∈ gα, Y ∈ gβ , and H ∈ h:

[H, [X,Y ]] = [[H,X],Y ] + [X, [H,Y ]] = α(H)[X,Y ] + β(H)[X,Y ] = (α + β)(H)[X,Y ],

which implies that [X,Y ] ∈ gα+β . For the remaining assertion:

κ([H,X],Y ) = α(H)κ(X,Y )

κ(X, [H,Y ]) = β(H)κ(X,Y )

κ([H,X],Y ) = −κ(X, [H,Y ])⇒ (α + β)(H)κ(X,Y ) = 0.

�

Corollary 2.2.5 The restriction of κ to g0 is non-degenerate.

Proof: If it is degenerate, let X ∈ g0 be such that κ(X,g0) = 0. In that case, by the

previous relation κ(X,gα) = 0 for any α , 0. Since g =
⊕

gα, then κ(X,g) = 0. But

the Killing form of g is non-degenerate (Theorem 1.3.7), a contradiction. �

Theorem 2.2.6 Let h be a maximal toral subalgebra, then h = g0.

Proof: We will proceed in steps:

(1) g0 contains the nilpotent and semi-simple parts of its elements.

X ∈ g0 implies that ad(X)H = 0 for all H ∈ h, by Jordan decomposition proper-

ties, ad(S) and ad(N ) must map h to 0 (they are polynomials in ad(X)).

(2) All semi-simple elements of g0 lie in h.

If S ∈ g0 is semi-simple and [h,S] = 0, then h+FS is a toral subalgebra, therefore

S ∈ h by maximality of h.
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(3) The restriction of κ to h is non-degenerate.

Let H ∈ h be such that κ(H,h) = 0, if N ∈ g0 is nilpotent, then [N,H] = 0 and

ad(N ) is nilpotent. ad(N )ad(H) is therefore nilpotent and κ(N,H) = Tr(ad(N )ad(H)) =

0. But then, for all X = S +N ∈ g0, we have κ(H,X) = 0 since S ∈ h by (2), con-

tradicting Corollary 2.2.5 as h ⊆ g0.

(4) g0 is a nilpotent algebra.

If S ∈ g0 is semi-simple, then S ∈ h and therefore [S,g0] = 0, implying that

ad(S) is nilpotent in g0. Now if X = S+N is any element of g0, then ad(X) is the

sum of commuting nilpotent endomorphisms. Therefore ad(X) is nilpotent

and by Engel’s Theorem (Theorem 1.2.5) g0 is nilpotent.

(5) h∩ [g0,g0] = 0.

Since [h,g0] = 0, then κ(h, [g0,g0]) = 0 by associativity. Therefore, if H ∈ [g0,g0]

and H ∈ h, then H = 0 by (3).

(6) g0 is abelian.

Otherwise [g0,g0] , 0, since g0 is nilpotent, then [g0,g0]∩ z(g0) , 0. Let X be

an element in this intersection, its nilpotent part N is non-zero and also lies in

z(g0) (ad(N ) is a polynomial in ad(X)), since ad(N ) is nilpotent and commutes

with g0, then κ(N,g0) = 0, contradicting Corollary 2.2.5.

(7) h = g0

Otherwise, there exists a non-zero nilpotent element N ∈ g0, but in that case

since g0 is abelian then for every X ∈ g0, ad(N )ad(X) = ad(X)ad(N ) is a nilpo-

tent endomorphism and therefore has trace 0, implying that κ(N,g0) = 0 con-

tradicting Corollary 2.2.5.

�

2.3. Finite-Dimensional Representations of sl(2)

The purpose of this section is to both exemplify the decomposition defined in the

previous section, as well as construct tools to expand on root decomposition on the

next section. The results from this section follow [Hum72, chpt 7].

Let g = sl(2,F), a traditional basis of this algebra is the following:

X =

0 1

0 0

 , H =

1 0

0 −1

 , Y =

0 0

1 0

 .
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2. Root Decomposition

The commutators in this basis satisfy the following relations:

[X,Y ] =H, [H,X] = 2X, [H,Y ] = −2Y .

H is diagonal and acts diagonally in any g-module V (Proposition 2.1.5).

Because of this and the fact that F is algebraically closed, we have well defined

eigenspaces with respect to H , denoted as Vλ = {v ∈ V | Hv = λv}. If V is finite-

dimensional, then V =
⊕

λ∈FVλ. Whenever Vλ , 0, we call λ a weight and Vλ a

weight space.

Lemma 2.3.1 If v ∈ Vλ, then Xv ∈ Vλ+2 and Y v ∈ Vλ−2.

Proof: Since V is a g-module then [A,B]v = A(Bv)−B(Av) for any v ∈ V and A,B ∈ g,
therefore:

H(Xv) = [H,X]v +X(Hv) = 2Xv +X(λv) = (λ+ 2)Xv,

H(Y v) = [H,Y ]v +Y (Hv) = −2Y v +Y (λv) = (λ− 2)Xv.

�

If we let V be a non-trivial finite-dimensional sl(2,F)-module, we know that there

exists λ such that Vλ , 0 and Vλ+2 = 0, we will call one of these weights maximal

and any vector in Vλ a maximal vector. A direct consequence of this definition is

that if v is a maximal vector, then Xv = 0.

We can determine the action of g in a special subset of vectors, inspired by the idea

of determining the action of X by the action of Y :

Lemma 2.3.2 Let v0 be a maximal vector of weight λ. Set v−1 = 0 and vi = 1
i!Y

iv0 for
i ≥ 0, then:

(a) Hvi = (λ− 2i)vi ,

(b) Y vi = (i + 1)vi+1,

(c) Xvi = (λ− i + 1)vi−1 for i ≥ 0.

Proof:

(a) Follows directly from Lemma 2.3.1.

(b) Is a consequence of the definition, in fact:

vi+1 =
1

(i + 1)!
Y i+1v0 =

1
i + 1

Y
(1
i!
Y iv0

)
=

1
i + 1

Y vi .
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2. Root Decomposition

(c) Since v0 is maximal then Xv0 = 0 and the result is valid, proceeding by induc-

tion:

Xvi =
1
i
X(Y vi−1)

iXvi = [X,Y ]vi−1 +Y (Xvi−1)

=Hvi−1 +Y (Xvi−1)

= (λ− 2(i − 1))vi−1 +Y (λ− i + 2)vi−2

= (λ− 2(i − 1))vi−1 + (λ− i + 2)(i − 1)vi−1

= i(λ− i + 1)vi−1.

�

Now if we consider V to be irreducible, we can explicitly classify V with respect to

the set of vi which in turn are completely determined by λ.

Theorem 2.3.3 If V is irreducible, then the set of {vi} form a basis of V , λ is a positive
integer and the number of vectors {vi} is precisely λ+ 1.

Proof: Since each vi is an eigenvector of H with different eigenvalues (Lemma

2.3.1(a)), the set {vi} is linearly independent.

The span of the set {vi} is closed under the action of g. As this span is non-zero then

it must be the whole V since it is an irreducible module.

Let m be the largest value such that vm , 0 but vm+1 = 0 (V is non-trivial and finite-

dimensional). Letting i =m+ 1 in Lemma 2.3.2(c) we find:

Xvm+1 = (λ− (m+ 1) + 1)vm ⇐⇒ 0 = (λ−m)vm,

therefore λ =m, which is a positive integer, furthermore, {v0,v1, · · · ,vm} is a basis of

V , and dimV = λ+ 1. �

We can summarize a classification of finite-dimensional irreducible sl(2)-modules

using the previous theorem:

Theorem 2.3.4 (Classification of irreducible sl(2)-modules) If V is an irreducible
sl(2)-module of dimension m+ 1, then:

(a) V = V−m ⊕V−m+2 ⊕ · · · ⊕Vm−2 ⊕Vm, each weight space with dimension one.

(b) V has a unique maximal weight and a unique maximal vector up to scalar multi-
ples.
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2. Root Decomposition

(c) The sl(2)-action is defined by the formulas in Lemma 2.3.2. In particular, for each
natural number n, there exists a unique (up to isomorphism) n-dimensional irre-
ducible sl(2)-module.

Since every sl(2)-module is the sum of irreducible modules (Weyl’s Theorem 1.4.12),

then:

Corollary 2.3.5 Let V be any finite-dimensional sl(2,F) module, then all the eigenvalues
of H on V are integers and each occurs along with its negative an equal number of times.
Moreover, in any decomposition of V as a direct sum of irreducible sub-modules, the
number of modules in this decomposition is dim(V0) + dim(V1).

Proof: The first result is direct. Since every irreducible module is a sum of weight

spaces with distance 2 from each other, then each irreducible sub-module must have

weight 0 or 1, but not both. �

2.4. Root Decomposition

This section is based on [Hum72][chpt 8]. Let g be a finite-dimensional semi-simple

Lie algebra over an algebraically closed field F of characteristic 0.

Fix h to be maximal toral subalgebra of g, and for α ∈ h∗, define

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h}.

We will call a root, any α ∈ h∗\{0} such that gα , 0, and denote the set of all roots by

Φ .

Since the Killing form restricted to h is non-degenerate, then for every α ∈ h∗ we can

find some Tα ∈ h that represents it, meaning α(H) = κ(Tα,H).

Orthogonality

Reminding ourselves of the property of orthogonality between roots, meaning that

if α + β , 0 for elements in h∗ then κ(gα,gβ) = 0 (Proposition 2.2.4).

With this we can summarize the first properties of root decomposition:

Proposition 2.4.1 (a) Φ spans h∗.

(b) If α ∈ Φ , then −α ∈ Φ .

(c) Let α ∈ Φ , X ∈ gα, and Y ∈ g−α, then: [X,Y ] = κ(X,Y )Tα.
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2. Root Decomposition

(d) If α ∈ Φ , then [gα,g−α] is one dimensional.

(e) If α ∈ Φ , then α(Tα) = κ(Tα,Tα) , 0.

(f) If α ∈ Φ and Xα ∈ gα is any non-zero element, then there exists Yα ∈ gα such that
{Xα, [Xα,Yα],Yα} spans a three dimensional subalgebra of g isomorphic to sl(2).

(g) Let α ∈ Φ and Xα, Yα as above. If Hα = [Xα,Yα] we have Hα = −H−α = 2Tα
κ(Tα ,Tα) .

Proof:

(a) If Φ fails to span h∗, then by duality we get a non-zero element H ∈ h such that

α(H) = 0 for all α ∈ Φ . But in that case for any Xα ∈ gα this means [H,Xα] =

α(H)Xα = 0. This implies that H ∈ z(g), a contradiction.

(b) Suppose α ∈ Φ and −α < Φ , then there is no element β ∈ Φ such that α +β = 0,

meaning that κ(gα,g) = 0, contradicting the non-degeneracy of κ.

(c) Let H ∈ h be arbitrary, then:

κ(H, [X,Y ]) = κ([H,X],Y ) = α(H)κ(X,Y ) = κ(H,Tα)κ(X,Y ) = κ(H,κ(X,Y )Tα)

κ(H, [X,Y ]−κ(X,Y )Tα) = 0.

This in turn implies that h is orthogonal to [X,Y ]−κ(X,Y )Tα, forcing [X,Y ] =

κ(X,Y )Tα since [X,Y ] ∈ g0 = h and κ is non-degenerate in h.

(d) (c) shows that Tα spans [gα,g−α], provided it is not 0, and this space cannot be

0 because otherwise κ(gα,g−α) = 0 and therefore κ(gα,g) = 0.

(e) If α(Tα) = 0 choose X ∈ gα and Y ∈ g−α such that κ(X,Y ) = 1 (due to (d)).

The subspace S spanned by {X,Tα,Y } satisfies [X,Y ] = Tα, [X,Tα] = 0, and

[Y ,Tα] = 0. Therefore S is a three-dimensional solvable Lie algebra isomorphic

to ad(S) ⊂ gl(g). ad([S,S]) is nilpotent and ad(Tα) is both semi-simple and

nilpotent, implying that ad(Tα) = 0⇒ Tα = 0, absurd.

(f) Let Hα = 2Tα
κ(Tα ,Tα) , then find Yα ∈ g−α such that κ(X,Y ) = 2

κ(Tα ,Tα) . Therefore

[Xα,Yα] = κ(X,Y )Tα = Hα. Now [Hα,Xα] = α(Hα)Xα = 2α(Tα)
κ(Tα ,Tα)Xα = 2Xα, and

similarly for [H,Yα] = −2Yα.

(g) Remember that T−α is defined as an element that satisfies κ(T−α,H) = −α(H)

for any H ∈ h, but κ(−Tα,H) = −κ(Tα,H) = −α(H). Therefore Tα = −T−α and

Hα = −H−α.
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�

Integrality

For each pair of roots α,−α let Sα be a subalgebra isomorphic to sl(2) constructed

in Theorem 2.4.1. Several properties of its representations have been established,

using those properties we can analyze some modules contained in g, given rise to

the following:

Proposition 2.4.2 Let α ∈ Φ and Mα =
⊕
c∈F

gcα, then Mα is a Sα-module and:

(a) dimgα = 1.

(b) If cα is a root, then c = ±1.

Proof: Since [gcα,gc′α] ⊂ g(c+c′)α and Sα ⊂Mα, thenMα is a Sα-module via the adjoint

representation.

Now the weights of Hα in M are 2cα since α(Hα) = 2 and [Hα,X] = cα(Hα)X for any

X ∈ gcα.

Note that kerα is a sub-module of M with codimension 1 in h complementary to

Hα, therefore the weight 0 only occurs in kerα and Sα, but Sα is irreducible and

therefore the only even weights in M are 0,±2. This proves that twice a root can

never be a root, but then half a root cannot be a root either, therefore there is no

weight 1 inM. This in turn implies thatM = kerα⊕Sα, in particular dimgα = 1 and

the only multiples of α which are roots are ±α. �

Proposition 2.4.3 Let α,β ∈ Φ such that β , ±α and let:

Kα(β) = gβ−rα ⊕ gβ−(r−1)α ⊕ · · · ⊕ gβ ⊕ gβ+α ⊕ · · ·gβ+qα,

where r is the largest integer such that β − rα is a root and q is the largest integer such
that β + qα is a root. Then Kα is an Sα-module and :

(a) β(Hα) ∈ Z and β − β(Hα)α ∈ Φ .

(b) If i is such that −r ≤ i ≤ q, then β + iα ∈ Φ and β(Hα) = r − q.

Proof: Each root space is one dimensional, and none of the β + iα can be equal to 0

since β , ±α and no other multiple of α is a root.
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Now if X ∈ gβ+iα then [Hα,X] = (β + iα)(Hα)X = (β(Hα) + 2i)X, and therefore the

only distinct weights of Hα are β(Hα) + 2i. Since all of those weights must be in-

tegers (Proposition 2.3.5), then β(Hα) ∈ Z. Obviously not both 0 or 1 can occurs

as weights, and because every root space is one dimensional, then Kα is irreducible

(dim(Kα0
) + dim(Kα1

) = 1).

Since every weight occurs along with its negative, then:

β(Hα)− 2r = −(β(Hα) + 2q)⇒ β(Hα) = r − q.

�

Rationality

The Killing form is non-degenerate (Theorem 1.3.7) and symmetric (Lemma 1.3.6),

it is natural to think if there is a way to construct an inner product out of it. There

is in fact a natural way to construct such inner product on roots.

Let (γ,δ) = κ(Tγ ,Tδ) for all γ,δ ∈ h∗, {α1, · · · ,α`} a basis consisting of roots and β =∑`
i=1 ciαi ∈ h∗.

Proposition 2.4.4 If β ∈ Φ , then ci ∈Q.

Proof: We know that

β(Hα) = κ(Tβ ,Hα) =
2κ(Tβ ,Tα)

κ(Tα,Tα)
=

2(β,α)

(α,α)
∈ Z.

Using the definition of β with this fact in mind we get:

2(β,αj)

(αj ,αj)
=

∑̀
i=1

ci
2(αj ,αi)

(αj ,αj)

β(Hαj ) =
∑̀
i=1

ciαi(Hαj ).

Therefore since this is a linear equation in ci with integer coefficients solvable in F,

then it is solvable in Q, implying that ci ∈Q. �

Let EQ be the space in Q spanned by the roots, we just proved that dimQ(EQ) = `.

Moreover:

Proposition 2.4.5 The form (·, ·) is naturally extended to EQ and is positive definite.
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Proof: Notice that:

(λ,µ) = κ(Tλ,Tµ) = Tr(ad(Tλ)ad(Tµ)) =
∑
α∈Φ

α(Tλ)α(Tµ) =
∑
α∈Φ

(α,λ)(α,µ).

In particular (β,β) =
∑
α∈Φ(α,β)2, multiplying this relation by 4

(β,β)2 we get

4
(β,β)

=
∑
α∈Φ

(
2(α,β)
(β,β)

)2

∈ Z.

Therefore (β,β) ∈ Q and in turn, since 2(α,β)
(β,β) ∈ Z then (α,β) ∈ Q, proving that the

form is well defined in EQ now since (β,β) =
∑
α∈Φ(α,β)2 it is positive definite as the

sum of squares of rational numbers. �

Summary

Let E be the real vector space extending the base field of EQ from Q to R, then the

following properties are satisfied:

(a) Φ spans E, and 0 < Φ .

(b) If α ∈ Φ , the only other multiple of α in Φ is −α.

(c) If α,β ∈ Φ , then β −
2(β,α)
(α,α)

α ∈ Φ .

(d) If α,β ∈ Φ , then 2(β,α)
(α,α) ∈ Z.

The pair (E,Φ) is called a root system.
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We want to study root systems independently of Lie algebras, using the summary

of the previous chapter as our definition. The classification of root systems is what

allowed us to classify all finite-dimensional simple Lie algebras over C.

This independent study allows us to better understand its underlying properties,

the geometrical implications of Rationality (Theorem 2.4.5). It also serves as an

introduction to the abstract theory of weights used extensively in representatoin

theory.

3.1. Axiomatic

This section focuses on providing some initial study to the structure of root systems,

including a non-unique partition of the root system, as well as natural bases to work

with them. The results presented here are based on [Hum72][chpt 9 & 10].

Definition 3.1.1 (Root System) Given an euclidean space E with inner product de-
noted by 〈 , 〉 and a finite subset Φ ⊂ E, then the pair (E,Φ) is said to be a root system
if:

(a) Φ spans E, and 0 < Φ .

(b) If α ∈ Φ then the only other multiple of α in Φ is −α.

(c) If α,β ∈ Φ , then β − 2〈β,α〉
〈α,α〉 ∈ Φ .

(d) If α,β ∈ Φ , then 2〈β,α〉
〈α,α〉 ∈ Z.

To reduce notation, we will define 2α
〈α,α〉 as α∨ and furthermore we will define as sα, the

linear transformation
sα(v) = v − 〈v,α∨〉α,

which is the reflection with respect to the hyperplane defined by α. With this in mind we
can reduce (c) and (d) to:
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(c’). If α,β ∈ Φ , then sα(β) ∈ Φ .

(d’). If α,β ∈ Φ , then 〈β,α∨〉 ∈ Z.

We call the operation (α,β) 7→ 〈β,α∨〉 the Cartan product. It is important to note

that axiom (c′) has a nice geometric interpretation: Φ is closed under reflections

with respect to hyperplanes defined by roots.

Axiom (d) allows us to deduce some simple integer restrictions to a root system:

Proposition 3.1.2 Let α,β ∈ Φ with ‖β‖ ≥ ‖α‖ (inner product norm). If θ is the angle
between them, then the Cartan product is restricted to those in the following table:

Table 3.1.: Possible values of the Cartan product
〈α,β∨〉 〈β,α∨〉 0

0 0 90◦

±1 ±1 60◦ or 120◦

±1 ±2 45◦ or 135◦

±1 ±3 30◦ or 150◦

±2 ±2 0◦ or 180◦

Proof: Consider that 〈α,β〉 = ‖α‖‖β‖cosθ where θ is the angle between the roots,

then since ‖α∨‖ = 2
‖α‖ then:

〈α,β∨〉〈β,α∨〉 =
4‖α‖‖β‖
‖β‖‖α‖

cos2θ = 4cos2θ

As 0 ≤ cos2θ ≤ 1, the only possibilities are those for which 〈α,β∨〉〈β,α∨〉 ≤ 4.

Which are all the cases present in Table 3.1, excluding the cases (0,n) with n , 0 and

(1,4).

The case (0,n), n , 0 can be excluded. If 〈α,β∨〉 = 0, then 〈α,β〉 = 0 and therefore

〈β,α∨〉 = 0.

The case (1,4) can also be excluded. In fact, 4cos2θ = 4 implies θ = 0 or θ = 180◦.

Therefore β is a multiple of α, meaning that β = ±α and therefore 〈α,β∨〉 = ±2.

Notice that the last case (±2,±2) only occurs on proportional roots. �

An important corollary of this restriction is as follows:

Corollary 3.1.3 Let α,β be non-proportional roots. If 〈α,β〉 > 0, then α−β is a root and
if 〈α,β〉 < 0, then α + β is a root.
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Proof: Since 〈α,β〉 is positive, Table 3.1 shows that 〈α,β∨〉 = 1 or 〈β,α∨〉 = 1.

If 〈α,β∨〉 = 1, then sβ(α) = α − β and α − β is a root (Axiom (c)).

If 〈β,α∨〉 = 1, then β −α is a root and therefore −(β −α) = α −β is a root (Axiom (a)).

If 〈α,β〉 is negative, then 〈α,−β〉 is positive and therefore α− (−β) = α+β is a root. �

Following this, we try to partition the space E based on Axiom (b).

Definition 3.1.4 Elements of R := {v ∈ E|〈α,v〉 , 0 for all α ∈ Φ} are called regular.
We call elements in Φ+(γ) := {α ∈ Φ |〈α,γ〉 > 0} positive roots.
Similarly, elements in Φ−(γ) := {α ∈ Φ |〈α,γ〉 < 0} are negative roots.
Furthermore, with respect to this partition, we call a positive root decomposable if α =

β1 + β2 for β1,β2 ∈ Φ+(γ), and indecomposable if it is not decomposable.

Theorem 3.1.5 (Root System Basis) The set ∆(γ) of indecomposable elements is a ba-
sis of E and every element in Φ+(γ) is in the Z+-span of ∆(γ).

Proof: We proceed by steps:

(1) Every element in Φ+(γ) is in the Z+-span of ∆(γ).

Otherwise, let β be an element that cannot be written in this way with 〈γ,β〉
as small as possible. Obviously β < ∆(γ), in that case β = β1 + β2 for some

β1,β2 ∈ Φ+(γ). Since 〈γ,β〉 = 〈γ,β1〉+ 〈γ,β2〉 and each of 〈γ,β1〉 and 〈γ,β2〉 are

positive, then β1,β2 must be in the Z+-span of ∆(γ) to avoid contradicting the

minimality of β. Then β = β1 + β2 is in the Z+-span of ∆(γ).

(2) ∆(γ) spans E.

The previous item shows that ∆(γ) spans Φ+(γ), through axiom (b) also spans

Φ , finally, through axiom (a) spans E.

(3) If α,β are distinct elements in ∆(γ), then 〈α,β〉 ≤ 0.

Otherwise, since β clearly cannot be −α, then α − β is in Φ (Corollary 3.1.3).

Therefore either α − β or β − α are in Φ+. If α − β ∈ Φ+ then α = β + (α − β)

and if β −α ∈ Φ+ then β = α + (β −α), contradicting the fact that α and β are

indecomposable.

(4) ∆(γ) is a linearly independent set.

Suppose this is not the case and let {rα} be such that
∑
α∈∆(γ) rαα = 0, divide

this sum for the cases in which rα > 0 (call it ∆1) and rα < 0 (call it ∆2), then:∑
α∈∆1

rαα =
∑
β∈∆2

−rββ = ε , 0,
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but in this case 〈ε,ε〉 =
∑
α,β −rαrβ〈α,β〉 > 0, rα > 0, rβ < 0, and 〈α,β〉 ≤ 0, a

contradiction.

�

Remark 3.1.6 Part 4. of the proof of Theorem 3.1.5 implies that any set in an euclidean
space that satisfy pairwise 〈α,β〉 < 0 is linearly independent.

From this point forward we fix a basis ∆ = ∆(γ) and call its elements simple.

Lemma 3.1.7 If α is a positive root but not simple, then α −β is a positive root for some
β ∈ ∆. In particular, every positive root can be written as α1 + · · ·+αi with each αk ∈ ∆
not necessarily distinct, in such a way that each partial sum is a root.

Proof: If 〈α,β〉 ≤ 0 for every β ∈ ∆, Remark 3.1.6 applies and ∆ ∪ {α} is linearly

independent, which is absurd. Therefore, there exists a β ∈ ∆ such that 〈α,β〉 > 0,

and α − β ∈ Φ (Corollary 3.1.3). α − β is a positive root, since at least one coordinate

of α with respect to ∆ remains positive after the subtraction of β (α , β). �

Lemma 3.1.8 Let α be a simple root, then sα permutes all positive roots except α.

Proof: Let β ∈ Φ+ − {α}, then we can write

β =
∑
δ∈∆

kδδ, kδ ∈ Z+, kr , 0 for some r , α.

As α ∈ ∆, the coefficient kr is unchanged in sα(β) = β − 〈β,α∨〉α. Therefore sα(β) has

at least one positive coefficient and is a positive root. Moreover since sα is bijective

and sα(−α) = α then sα(β) , α. �

Corollary 3.1.9 Set ρ :=
1
2

∑
β∈Φ+

β. Then sα(ρ) = ρ −α for all α ∈ ∆.

Proof: Let Φα = Φ+ − {α} and remember that sα(α) = −α

sα(ρ) =
1
2

∑
β∈Φ+

sα(β)

=
1
2

∑
β∈Φα

sα(β) +
1
2
sα(α)

=
1
2

∑
β∈Φα

β − 1
2
α

= ρ − 1
2
α − 1

2
α = ρ −α.
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�

3.2. Weyl Group

The structure of root systems is deeply connected to the structure of reflection

groups, as within any root system there is a clear reflection group: the group gener-

ated by all root reflections.

Definition 3.2.1 The group generated by all of the root reflections is called the Weyl
group: W = 〈sα |α ∈ Φ〉.

It is clear that this group is finite as a subgroup of root permutations. Since reflec-

tions preserve the inner product, so does W . Therefore W can be seen as a finite

subgroup of orthogonal transformations of E.

The purpose of this section is to analyze the general structure of this group, its ac-

tion on the root system, and to which degree this group defines a root system. This

section follows [Hum72][sec 10.3].

Another important point to consider is that W is a normal subgroup of Aut Φ =

{T ∈ gl(V )|T (Φ) = Φ and 〈α,β∨〉 = 〈T (α),T (β)∨〉}. In fact:

Proposition 3.2.2 If T ∈ Aut Φ , then T sαT −1 = sT (α).

Proof: Let β ∈ Φ be any root, then:

(T sαT
−1)(β) = T sα(T −1β) = T (T −1β − 〈T −1β,α,α∨〉) = β − 〈β,T (α)∨〉T (α) = sT (α)(β).

Since Φ spans E, the result follows. �

Lemma 3.2.3 Let α1, · · · ,αn ∈ ∆ (not necessarily distinct). Write sαi = si , i f s1 · · ·sn−1(sn)

is a negative root, then there exists some 1 ≤ t < n such that s1 · · ·sn = s1 · · ·st−1st+1 · · ·sn−1.

Proof: Write βi = si+1 · · ·sn−1(αn) for 1 ≤ i ≤ n− 2 and βn−1 = αn. Since β0 is negative

by hypothesis and βn−1 is positive, we can find the smallest index t such that βt is

positive.

But then σtβt = βt−1 which is negative, this forces βt = αt by Lemma 3.1.8, consider-

ing Proposition 3.2.2 for T ∈W we have that:

sT (α) = T sαT
−1,
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3. Root Systems

in particular, since αt = st+1 · · ·sn−1(αn):

st = (st+1 · · ·sn−1)sn(sn−1 · · ·st+1).

�

Corollary 3.2.4 If s ∈ W is written as a product of simple roots s = s1 · · ·st, with t as
small as possible, then s(αt) is negative.

Recall that basis of Φ are determined by regular elements. That is, any basis of Φ is

of the form ∆(γ) for some regular element γ .

The next section of results focuses on proving that the Weyl group acts transitively

on bases of Φ . Moreover, we can restrict the set of generators of W to a basis ∆(γ)

of Φ .

• For every two bases ∆(γ) and ∆(γ ′) of Φ there exists one, and only one, s ∈ W
such that s(∆(γ)) = ∆(γ ′).

• If γ ∈ R, thenW = 〈sα : α ∈ ∆(γ)〉.

For this purpose, fix γ ∈ R and letW ′(γ) = 〈sα : α ∈ ∆(γ)〉.

Theorem 3.2.5 If γ ′ ∈ R is another regular element, then there exists s ∈W ′(γ) such that
〈s(γ ′),α〉 > 0 for all α ∈ ∆(γ). In particular there exists s′ ∈ W ′(γ) such that s′(∆(γ)) =

∆(γ ′).

Proof: Consider ρ as defined in Corollary 3.1.9 and choose s ∈W ′ such that 〈s(γ ′),ρ〉
is as big as possible. For any α ∈ ∆(γ), we have sαs ∈W ′, and the choice of s implies:

〈s(γ ′),ρ〉 ≥ 〈sαs(γ ′),ρ〉 = 〈s(γ ′), sα(ρ)〉

= 〈s(γ ′),ρ −α〉

= 〈s(γ ′),ρ〉 − 〈s(γ ′),α〉.

〈s(γ ′),α〉 ≥ 0, but it cannot be equal to 0: 〈s(γ ′),α〉 = 〈γ ′, s−1(α)〉 and γ ′ is regular.

Let s′ = s−1, we want to prove that s′(∆(γ)) is irreducible with respect to Φ+(γ ′).

Since 〈γ ′, s′(α)〉 > 0 for any α ∈ ∆(γ), the same is true for Φ+(γ), proving that

Φ+(γ ′) = s′(Φ+(γ)) (they have the same cardinality).

Now suppose that for some α ∈ ∆(γ), s′(α) is not irreducible with respect to γ ′. Then

there exists β1,β2 ∈ Φ+(γ) such that s′(α) = s′(β1) + s′(β2).

This implies that α = β1 + β2, contradicting the fact that α is an irreducible root. �
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Lemma 3.2.6 Given any root α, there exists a regular element γ ′ such that α ∈ ∆(γ ′).

Proof: For a root β ∈ Φ , denote by β⊥ = {v ∈ E : 〈β,v〉 = 0}, we want to find an

element on the hyperplane α⊥ that is not on any other hyperplane β⊥, β , ±α. If

this element does not exist, we have:

α⊥ = α⊥ ∩
⋃

β∈Φ\{±α}
β⊥ =

⋃
β∈Φ\{±α}

(α⊥ ∩ β⊥),

but this in turn implies that the finite union of proper subspaces α⊥∩β⊥ is the space

α⊥ which is an absurd as R is infinite (see B.0.2). We can find γ ′ close enough to γ

in such a way that 〈α,γ ′〉 > |〈β,γ ′〉| > 0 for every root β , ±α, which in turn implies

that α ∈ ∆(γ ′). �

Corollary 3.2.7 Given any root α, there exists s ∈W ′ such that s(α) ∈ ∆(γ).

Proof: Let γ ′ ∈ R be such that α ∈ ∆(γ ′) (Lemma 3.2.6) and let s ∈ W ′ be such that

s(∆(γ ′)) = ∆(γ) (Theorem 3.2.5), then s(α) ∈ ∆(γ). �

Proposition 3.2.8 W =W ′(γ) for any γ ∈ R.

Proof: We will prove that sα for α ∈ Φ is an element ofW ′(γ), using Corollary 3.2.7

then there exists s ∈ W ′ such that s(α) ∈ ∆(γ), call s(α) = β, then s−1(β) = α, but on

the other hand (Proposition 3.2.2) sα = ss−1β = s−1sβs ∈W ′. �

Proposition 3.2.9 The only s ∈W such that s(∆) = ∆ inW is 1.

Proof: Suppose s(∆) = ∆ but s , 1. By Corollary 3.2.4, s(αk) is negative for some k, a

contradiction. �

3.3. Classification of Root Systems

The properties of the Weyl group proved in the previous section allows us to talk

about an independence of bases, and reach a classification of root systems. This

section follows [Hum72, chpt 11]

Definition 3.3.1 (Irreducible Root Systems) A root system Φ is called reducible if
there exists two proper subsets Φ1 and Φ2 of Φ with 〈Φ1,Φ2〉 = 0 and Φ1 ∪Φ2 = Φ .
A root system will be called irreducible if it is not reducible.

One important property of the irreducibility on root systems is that this property

can be determined by any basis:
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3. Root Systems

Proposition 3.3.2 Let Φ be a root system with basis ∆: If ∆ cannot be partitioned into
two proper orthogonal subsets, then Φ is irreducible.

Proof: LetΦ = Φ1∪Φ2, then ∆ = (∆∩Φ1)∪(∆∩Φ2) which is a partition by orthogonal

subsets, proper unless ∆ is contained in one of them, let this be Φ1 without loss of

generality, but that implies:

〈∆,Φ2〉 = 0⇒ 〈E,Φ2〉 = 0⇒ Φ2 = 0,

a contradiction, showing that if the basis is irreducible, so is the root system.

The converse is true, although the proof is not entirely trivial and shall not be cov-

ered for the purposes of this section. �

We already saw that every semi-simple Lie algebra has an associated root system,

less clear though, is the fact that every root system defines a Lie algebra, and that the

reducibility of this root system is directly related to the simplicity of this algebra,

we shall summarize these results of equivalence by the following:

Definition 3.3.3 Two root systems (Φ ,V ) and (Ψ ,W ) are said isomorphic if there is a
linear isomorphism T : V →W satisfying T (Φ) = Ψ and 〈T (α),T (β)∨〉 = 〈α,β∨〉, for all
α,β ∈ Φ .

Theorem 3.3.4 ([Hum72] p.96-101) Every root system Φ with basis ∆ = {α1, · · · ,α`}
defines a Lie algebra g generated by {Xi ,Hi ,Yi ,αi ∈ ∆} satisfying the relations

(a) [Hi ,Hj] = 0;

(b) [Xi ,Yi] =Hi , [Xi ,Yj] = 0 if i , j;

(c) [Hi ,Xj] = 〈αj ,αi∨〉Xj and [Hi ,Yj] = −〈αj ,αi∨〉Yj ;

(d) ad
〈αj ,αi∨〉+1
Xi

(Xj) = 0;

(e) ad
〈αj ,αi∨〉+1
Yi

(Yj) = 0.

If g is any semi-simple Lie algebra, and its root system Φ is irreducible then g is sim-
ple. Moreover, if two Lie algebras g and g′ have isomorphic root systems then they are
isomorphic.
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Figure 3.1.: Example of Irreducible Root Systems

This motivates the classification of irreducible root systems, which will be done

through their rank (number of elements in its base) and the respective Cartan prod-

uct. Given a root system Φ with basis ∆ = {α1, · · · ,α`}, its Cartan matrix is defined

by the matrix:

CΦ = (〈αi ,αj∨〉)ij ∈M`×`(Z).

For example the Cartan matrices for the root systems presented in Figure 3.1 are

given by:  2 −1

−1 2

  2 −2

−1 2

  2 −1

−3 2


Proposition 3.3.5 If (Φ ,V ) and (Ψ ,W ) are root systems with same Cartan matrix C
then they are isomorphic. That is, the Cartan matrix defines the root system up to iso-
morphism.

Proof: Let ∆Φ = {α1, · · · ,α`} and ∆Ψ = {β1, · · · ,β`} be the basis from which the Cartan

matrix is defined, then the linear morphism:

T : V →W

αi 7→ βi

is an isomorphism. It is trivially a linear isomorphism as it sends a basis of V onto

a basis of W , now letting α ∈ ∆ be arbitrary, one can see that the diagram given by:

V W

V W

T

sα sT (α)

T
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3. Root Systems

commutes through the relation:

sT (α)(T (γ)) = T (γ)− 〈T (γ),T (α)∨〉T (α) = T (γ)− 〈γ,α∨〉T (α) = T (sα(γ))

for any γ ∈ ∆. This in turn implies that the Weyl groups are isomorphic as they

are generated by {sα,α ∈ ∆} and {sT (α),α ∈ ∆} respectively, through the mapping

s 7→ T ◦ s ◦ T −1.

Since the Weyl group acting on the basis generates the whole root system we find

T (Φ) = Ψ . Moreover T preserves the Cartan product as it is the unique coefficient

〈T (α),T (β)∨〉T (α) = T (β)− sT (α)(T (β)). �

This result shows us that rather than classify all root systems, it is sufficient to clas-

sify Cartan matrices. This classification is usually done through Dynkin diagrams.

Definition 3.3.6 The Dynkin diagram of Φ with respect to a basis ∆ with an ordering
{α1, · · · ,α`} is a graph having `-vertices, with the i-th vertex joined to the j-th vertex with
〈αi ,αj∨〉 edges. If ‖αi‖ , ‖αj‖, all of these edges are directed as to point to the larger of
the two roots (with respect to ‖ · ‖).

Example 3.3.7 The root systems in Figure 3.1 have the respective Dynkin diagrams,
with respect to the basis {α,β}:

α β
,

α β
, and

α β

It is clear that the Dynkin diagram will be connected if and only if the underlying

root system is irreducible.

It is also clear that a Dynkin diagram uniquely defines the Cartan matrix for the

underlying root system given the restrictions of the Cartan product (Table 3.1).

All of these Dynkin diagrams have been classified into 4 infinite families of root

systems and 5 exceptional root systems. One can see [Hum72, p.57] for a full proof

of this classification.
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Table 3.2.: All possible connected Dynkin diagrams
A` 1 2 ` − 1 `

B` 1 2 ` − 2 ` − 1 `

C` 1 2 ` − 2 ` − 1 `

D` 1 2 ` − 3 ` − 2

` − 1

`

E6 1

2

3 4 5 6

E7 1

2

3 4 5 6 7

E8 1

2

3 4 5 6 7 8

F4 1 2 3 4

G2 1 2
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4 Universal Enveloping Algebras

The universal enveloping algebra of a Lie algebra is one of the more important tools

in representation theory, it is an associative algebra that contains an isomorphic

copy of g and extends all its representations. This algebra provides us many tools to

the study of representations of Lie algebras, for example, a general construction for

Casimir operators (Proposition 1.4.11), visualizing representations as modules over

rings, and commutation identities through the Poincaré-Birkhoff-Witt theorem.

4.1. Universal Enveloping Algebras

Only in this section, we let g be an arbitrary Lie algebra over any field. This section

was based on [Mar09, sec 10.1].

Definition 4.1.1 (Universal Enveloping Algebra) A pair (U,i), U being an associa-
tive algebra with unity and i : g→ U an algebra morphism is an universal enveloping
pair of a Lie algebra g if:

1. It is enveloping, meaning that i : g→ U is injective and its image i(g) generates U
as an algebra.

2. It is universal. If ρ : g → gl(V ) is a representation, then there exists a unique
morphism of associative algebras ρ̃ :U → gl(V ) satisfying:

ρ̃(i(X)) = ρ(X) for all X ∈ g.

U

g gl(V )

ρ̃
i

ρ

The idea of an universal object implies uniqueness, so before constructing the en-

veloping algebra explicitly, let us check uniqueness.
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4. Universal Enveloping Algebras

Remark 4.1.2 If there are two pairs (U,i) and (V ,j) that are universal and enveloping
then there is bijective morphism between then:

U

g V

U

j̃i

j

i
ĩ

The idea to construct the universal enveloping algebra for any Lie algebra comes

from the fact that the tensor algebra is an universal associative algebra for a vector

space. So we just need to reduce its structure to contain the Lie algebra bracket in

some way.

Proposition 4.1.3 If g is a Lie algebra and I is the ideal generated by

{[X,Y ]−X ⊗Y +Y ⊗X | X,Y ∈ g}

in the tensor algebra T (g), then U (g) = T (g)/I is an universal enveloping algebra of g.

Proof: Notice that U (g) contains at least the scalars since the ideal only contains

elements of order higher than 1.

If π : T (g)→ U (g) is the canonical projection then we define i to be the restriction

of π to g ⊂ T (g). If ρ : g→ gl(V ) is any representation, then let ϕ be the morphism

from T (g)→ gl(V ) extending ρ. Now since ρ is a representation then for an element

in I we get

ϕ(X ⊗Y −Y ⊗X − [X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X)− ρ([X,Y ]) = 0,

therefore I ⊂ kerϕ and ϕ induces a morphism ρ̃ :U (g)→ gl(V ) satisfying ρ̃ ◦ i = ρ.

U (g)

g T (g) gl(V )

ρ̃

ρ

i π

ϕ

The injectivity of i is not trivial, but is a direct consequence of the PBW theorem

presented in the next section. �
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Poincaré-Birkhoff-Witt Theorem

We now focus our attention in a natural basis of U (g) and finish to prove that it

actually is the universal enveloping algebra.

For this, let B = {Xi | i ∈ I} be a well-ordered basis of g by the ordering (≤) in the set

of indices.

Theorem 4.1.4 The set of monomials

{Xi1 · · ·Xik | k ∈ Z≥0 and ij ≤ ij+1 for j in 1, · · · , k − 1}

is a basis of U (g). In particular if we have a finite basis {X1, · · · ,Xn}, then the monomials:

Xm1
1 Xm2

2 · · ·X
mn
n with mi ≥ 0

form a basis of U (g).

Proof: See Theorem B.0.3 or [Mar09, p.272-275]. �

Corollary 4.1.5 i : g→U (g) is injective.

In the case that g is a semi-simple Lie algebra over C, we can consider a maximal

toral subalgebra h and roots Φ such that:

g = h⊕
⊕
α∈Φ

gα.

If ∆ is a basis of Φ , we can partition the root system as Φ = Φ− ∪Φ+. Let

n− =
⊕
α∈Φ−

gα and n+ =
⊕
α∈Φ+

gα.

It is clear that n− and n+ are subalgebras of g through additivity ([gα,gβ] ⊆ gα+β).

The decomposition g = n− ⊕ h⊕n+ is called a Cartan decomposition.

By the PBW theorem, suitably ordering a basis of g:

Corollary 4.1.6 U (g) =U (n−)⊗CU (h)⊗CU (n+).

Remark 4.1.7 If V is a g-module (as defined in 1.4.1), then the induced algebra mor-
phism gives V a natural U (g)-module structure.
For anyU (g)-module V , we can restrict the action to g in order to obtain a representation
of g. These two approaches are totally equivalent.
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4.2. Representations

Let g be a finite-dimensional semi-simple Lie algebra over an algebraically closed

field F of characteristic 0, with maximal toral (equivalently, cartan) subalgebra h

and V any finite-dimensional g-module. We have seen that h acts semisimply on V ,

this allows us to decompose V into eigenspaces with respect to h.

V =
⊕
λ∈h∗

Vλ,

where Vλ = {v ∈ V |H · v = λ(H)v for all H ∈ h}, we will call it a weight space when-

ever Vλ , 0 and we will call λ a weight of V .

Example 4.2.1 Let V = g with the adjoint action. The weights λ are the roots α, along
with 0, where h is the 0-weight space.
Letting g = sl(2,F), h∗ is one-dimensional, and the weights of any particular finite-
dimensional representation are subsets of the lattice of integers.

If dimV =∞, there is no assurance that such decomposition holds, when it does we

call V a weight module. Weight modules are one of, if not the most, importan class

of modules to study in representation theory.

To formalize the concept of weights on arbitrary representations of semi-simple Lie

algebra, we will generalize the results of additivity under the g-action of weights

already seen in the case of sl(2,F) and the adjoint action.

Lemma 4.2.2 If V is an arbitrary g-module. Then:

(a) gα maps Vλ to Vλ+α(α ∈ Φ and λ ∈ h∗).

(b) The sum V ′ =
∑
λ∈h∗ Vλ is direct, and V ′ is a submodule of V .

(c) If V is finite-dimensional, then V = V ′.

Proof: Let X ∈ gα, thenH(Xv) = X(Hv)+[H,X]v = λ(H)Xv+α(H)Xv = (λ+α)(H)Xv.

Since g is the sum of root-spaces, then V ′ is closed under the action of g by the pre-

vious note, as it is also a sum of vector spaces it is a vector space. As eigenspaces of

distinct eigenvalues, the sum is direct.

Finally, if V is finite-dimensional, since we are taking an algebraically closed field,

it decomposes as a direct sum of eigenspaces. �
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As we did with sl(2,F), we shall define a maximal vector, let ∆ ⊂ Φ be a basis of the

root system, and Φ+, Φ− be the positive and negative roots with respect to ∆.

Given V a g-module, we call v+ a maximal vector of weight λ if gαv = 0 for any

α ∈ Φ+ and v ∈ Vλ. If dimV = ∞, there is no reason for a maximal vector to exist.

On finite-dimensional representation, maximal vectors have to exist because the

algebra h⊕ n+ is solvable, so the existence of a common eigenvector is necessary by

Lie’s Theorem, and the eigenvalues of n+ as nilpotent elements has to be 0.

An essential sub-class of weight modules are those generated by a single maximal

vector. We call V a highest weight module if V = gv+ with v+ being a maximal

vector. To justify this terminology, let us look at the following results:

Theorem 4.2.3 Let V be a highest weight g-module with maximal vector v+ ∈ Vλ.
Denote Φ+ = {β1, · · · ,βm}, ∆ = {α1, · · · ,α`}, Xk the vector that spans gβk , and Yk as the one
that spans g−βk . Then:

(a) V is spanned by the vectors Y i11 · · ·Y
im
m v+ (ik ∈ Z≥0), in particular V is a weight

module.

(b) The weights of V are of the form µ = λ−
∑`
i=1 kiαi , with ki ∈ Z≥0.

(c) For each µ ∈ h∗ we have dimVµ <∞ and dimVλ = 1.

(d) Each submodule of V is a direct sum of its weight spaces.

(e) V is an indecomposable g-module, with a unique maximal proper submodule and a
corresponding unique irreducible quotient.

(f) Every non-zero homomorphic image of V is also a highest weight module of weight
λ.

Proof:

(a) By Corollary 4.1.6, we know that U (g) = U (n−)⊗CU (h)⊗C. U (n+) acts as 0 on

v+ and U (h) acts as a scalar, therefore U (g)v+ = U (n−)v+. Applying the PBW

theorem to the algebra U (n−) we know that a basis for U (n−) is given by the

ordered monomials Y i11 · · ·Y
im
m . Since v+ generates V , the result follows.

(b) Since every weight βi is positive, they are written as a sum of simple roots, and

by (a) every element of V is the image of the action of a negative root vector

on v+.
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(c) Only a finite number of combinations of the roots −βm centered at λ can give

rise to a particular weight µ = λ −
∑`
i=1 kiαl . In view of (a) they span this

weight space and therefore dimVµ <∞. Since there is only one way to get to

the weight λ, through ik = 0 for all k, dimVλ = 1.

(d) Since V is a weight module by (a), it rests to prove that if a submodule contains

a sum, then they must contain the weight vectors.

Let W ⊂ V be a submodule and w =
∑r
i=1 vi for vi weight vectors of weight µi .

If some vi lie in W , then w − vi ∈W and we may assume w = v1 + · · ·+ vk with

no vi in W minimal on k. Choose H ∈ h such that µ1(H) , µ2(H), then Hw ∈W
and so is µ1(H)w. Therefore:

(H −µ1(H)I)w = (µ2(H)−µ1(H))v2 + · · ·+ (µk(H)−µ1(H))vk , 0,

which means one of those elements lie in W , contradicting minimality.

(e) Since v+ generates V , no proper submodules contains v+. Therefore the sum

of all proper submodules is still a proper submodule and trivially maximal,

let us call this sum W . Every proper submodule is contained in W , proving

that V cannot be decomposed.

Moreover, since W is unique and maximal, there is a unique irreducible quo-

tient V /W .

(f) Let φ(V ) be such non-zero homomorphic image, then φ(v+) generates the im-

age, and by preservation it is also maximal of weight λ.

�

Corollary 4.2.4 Let V be an irreducible highest weight g-module with maximal vector
v+ of weight λ, then there is no other maximal vector (up to scalar multiples) in V .

Proof: If w+ is another maximal vector, then U (g)w+ = V since V is irreducible. If

µ is the weight of w+ then Theorem 4.2.3(b) applies to both µ and λ, and therefore

µ = λ. By part (c) they must be proportional. �

Based on the previous corollary, one might naturally think about how to describe

all the irreducible modules of that form by their highest weight.

Given λ ∈ h∗ there always exists an irreducible module with λ as the highest weight

(see Section 5.2), furthermore, they are always isomorphic.
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Theorem 4.2.5 If V ,W are irreducible highest weight of highest weight λ, then they are
isomorphic.

Proof: Let M = V ⊕W and v+, w+ be their respective maximal vectors, then m+ =

(v+,w+) is also a maximal vector by how we extend the g-action on M.

Let N =U (g)m+, it is then a highest weight sub g-module of M, then the projections

from N to the initial modules form irreducible quotients of N and are therefore

isomorphic by Theorem 4.2.3(e). �
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We begin the study of category O by reminding ourselves of the equivalence be-

tween g andU (g) modules, every gmodule induces anU (g) module by the universal

property and every U (g) module gives rise to a g-module through the action of the

length one elements. The results here presented are based on [Hum08, chpt 0&1].

The category U (g)-mod of representations is definitely too big for any practical

purposes. BGG category O was originally constructed by Joseph Bernstein, Sergei

Gelfand, and Israel Gelfand with the intent to extend on results for finite-dimensional

representations as well as understand problems raised by Daya-Nand Verma in his

Ph.D. thesis in 1968.

There are many reasons to study Category O:

• It is an abelian category, meaning that it is a category in which morphisms and

objects can be added, kernels and cokernels exist and have desirable proper-

ties.

• It contains imporant objects to the study of representation theory, such as the

finite-dimensional modules and highest weight modules.

• Its irreducible objects have been completely classified as quotients of highest

weight modules.

• Its results are relatively accesible when compared to other sub-categories of

U (g)-mod.

On this chapter fix a finite-dimensional semi-simple Lie algebra g, a maximal toral

subalgebra h and a basis ∆ for its root system Φ . Let g = n− ⊕ h⊕ n+ be the Cartan

decomposition of g with respect to ∆.
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5.1. Axiomatic

Definition 5.1.1 We will say that a U (g)-module M is on BGG category O if it satisfies
the following conditions:

(O1) M is finitely generated as a U (g)-module.

(O2) M is a weight module.

(O3) For each v ∈M the subspace generated by the action of n+ on v is finite.

As a category, we define as the objects of O the modules satisfying conditions (O1),

(O2) and (O3). The morphisms are the ones inherited from U (g)-mod, and since we

define it this way we sayO is a full subcategory ofU (g)-mod, as all arrows betweeen

two objects of O in the category U (g)-mod are also arrows in O.

Proposition 5.1.2 As a direct consequence of the axioms, an M ∈ O satisfies:

(O4) M is finitely generated by weight vectors.

(O5) Every weight space of M is finite-dimensional.

(O6) There exists a maximal vector v+ ∈M.

Proof:

(O4) Since M is a finitely generated weight module, we can take the weight vectors

that make up our set of generators (every generator is a linear combination of

weight vectors).

(O5) We can assume M to be generated by a single weight vector v. Since U (n+)v is

finite dimensional and there are only a finite number of combinations of roots

that go from a certain weight to a lower one, the result follows.

(O6) Otherwise U (n+)v would not be finite dimensional for any non-zero weight

vector v.

�

Since every finite-dimensional module is a weight module then they are trivially

modules in O. It is also easily seen that highest weight modules are also in O.

Theorem 5.1.3 As a category O satisfies:
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5. Category O

(a) O is a noetherian category, meaning all M ∈ O are noetherian modules.

(b) O is closed under submodules, quotients and finite direct sums.

(c) O is an abelian category.

Proof:

(a) Since U (g) is Noetherian [MR01, p.31] and all M ∈ O are finitely generated, the
result follows.

(b) A submodule of a module in O is finitely generated by (a). It is a weight module
since for finite sum of weight vectors vi of distinct weights λi we can find H ∈ h
such that λi(H) = 0 for all but one i. Finally, condition (O3) is trivial.
For quotients, a quotient of a Noetherian module satisfies (O1) and (O3) trivially.
For (O2), letting π denote the canonical projection, note that it will either send a
weight vector vλ to 0 or to a weight vector whose weight is λ through:

Hπ(vλ) = π(Hvλ) = π(λ(H)vλ) = λ(H)π(vλ).

The case for finite direct sums is trivial.

(c) SinceU (g)-mod is an abelian category, it is sufficient to check thatO is closed under
finite direct sums, kernels and cokernels. All of which follow from (b).

�

We shall now prove that the highest-weight modules introduced in Section 4.2 are,

in a loose sense, building blocks for all non-zero modules of O.

Proposition 5.1.4 Let M be any nonzero module in O. Then M has a finite filtration
0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M with nonzero quotients each of which is a highest weight
module.

Proof: M is finitely generated by weight vectors. Let W be one such set of genera-

tors, then V = n+W is a finite-dimensional n+-module. If dimV = 1 then W is itself

a highest weight module. Otherwise proceed by induction.

Let v ∈ V be a maximal vector ofM andM :=M/M1 ∈ O, whereM1 = vM. ThenM is

generated by the image V of V through the canonical projection, and dimV < dimV .

The induction hypothesis can be applied to M yielding a chain of modules in M,

whose pre-images in M are the desired modules. �
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5. Category O

5.2. Verma Modules

We are able to construct a large family of highest weight modules by inducing an

easily constructed family of highest modules for a subalgebra of g to the whole of g.

This will be done through the use of the Borel subalgebra b = h⊕n+.

The quotient algebra b/n+ is isomorphic to h, therefore any λ ∈ h∗ defines a 1-

dimensional b-module with trivial n+-action, denote this by Cλ. This means that

an element (H +X) ∈ b acts as λ(H) on Cλ.

Definition 5.2.1 The U (b)-module M(λ) := U (g) ⊗U (b) Cλ has a natural structure of
U (g)-module and, as a U (g)-module is called the Verma module.

The Verma module is a highest weight module with maximal vector v+ = 1 ⊗ 1 of

weight λ, in fact, it is the universal highest weight module of weight λ.

Having this constructed, we shall denote N (λ) as the unique maximal submodule

of M(λ) and L(λ) as the unique simple quotient.

Theorem 5.2.2 For every highest weight module M of weight λ, there is a surjective
module morphism ϕ :M(λ)→M.

Proof: Since M is a highest weight module, there exists an U (g)-module morphism

ρ :U (g)→M, with ρ(X) = Xv+.

M is highest weight of weight λ, therefore n+ and {H − λ(H) : H ∈ h} are contained

in the kernel, let I denote the ideal generated by these two sets.

By the definition ofM(λ), theU (g)-module morphismψ :U (g)→M(λ) has as kernel

exactly I , therefore M(λ) is isomorphic to U (g)/I . Finally we can induce a surjective

morphism from M(λ) to M:

M(λ) U (g)/I U (g)/ kerρ M
ψ̃ ρ̃−1

�

Theorem 5.2.3 Every irreducible module M ∈ O is isomorphic to L(λ) for some λ ∈ h∗.

Proof: Since every module M ∈ O has a maximal vector v+ of weight λ, by irre-

ducibility M =U (g)v+.

But then M is a highest module of weight λ, and so is L(λ), therefore, they are iso-

morphic by Theorem 4.2.5. �
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A General Algebra

Definition A.0.1 A pair (A, ·) whereA is a vector space over a field F and · :A×A→A
is bilinear is called an F-algebra.

F-algebras are everywhere in mathematical research, from matrix spaces to polyno-

mials and are the main topic of this dissertation.

Note that this is a convention used in the studies of linear properties of algebraic

structures, and in another context an F-algebra can denote something different.

If some additional structure is present in the algebra, we shall denote so by the

properties of its product, for example, the following:

• If for all x,y ∈ A, x · y = y · x it is called commutative.

• If for all x,y,z ∈ A, (x · y) · z = x · (y · z) it is called associative.

• If there exists an element e ∈ A such that e · x = x · e = x for all x ∈ A then it is

called unital.

Definition A.0.2 A subspace B of an algebra A which satisfies x,y ∈ B ⇒ x · y ∈ B is
called a subalgebra which will be represented by B ≤ A. When it satisfies the further
property that x ∈ A,y ∈ B⇒ x · y ∈ B (y · x ∈ B) it will be called a left-ideal (right-ideal),
being simply called an ideal if it satisfies both, which will be denoted by AE B.
An algebra morphism is defined as a linear transformation that preserves the product, that
is, given two algebras (A, ·), (B,×) then a linear transformation ϕ : A→ B is an algebra
morphism if:

ϕ(x · y) = ϕ(x)×ϕ(y).

It is generally useful on proving properties of algebras to consider different induced

algebras from known ones, such as a quotient or direct sum. There is a natural way

to expand the product by composing algebras in those cases.
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A. General Algebra

Proposition A.0.3 If B is an ideal of (A, ·) then the quotient space A/B with the product
× defined as [x]× [y] = [x · y] is an algebra and the projection [ ] : A→ A/B is an algebra
morphism.
If (A, ·) and (B,×) are algebras, then the vector space A⊕B is an algebra with (a,b)(a′,b′) =

(a · a′,b × b′).

Proof: It just needs to be shown that the product is well defined, but given x+B and

y+B, the product (x+B) · (y+B) = x ·y+x ·B+B ·y+B ·B = x ·y+B is in the same coset

independently of the representing vector used. As for the direct sum, bilinearity

follows directly from the vector space structure from A⊕B and the bilinearity of the

product. �

We will state some theorems that will be useful later for the specific cases of Lie

algebras but are valid in the general case of algebras:

Proposition A.0.4 Given algebras (A, ·) and (B,×), and a morphism ϕ : A→ B:

(a) ker(ϕ)E A.

(b) ϕ(A) ≤ B.

(c) A/ ker(ϕ) ' im(ϕ) where (') denotes the existence of a bijective morphism (isomor-
phism).

Proof: GivenX ∈ ker(ϕ) and Y ∈ A, ϕ(X ·Y ) = ϕ(X)×ϕ(Y ) = 0 and thereforeX ·Y ∈ A.

That is, ker(ϕ) is an ideal of A.

Given ϕ(X),ϕ(Y ) ∈ ϕ(A), ϕ(X) ×ϕ(Y ) = ϕ(X · Y ), and since X · Y ∈ A, then ϕ(X) ×
ϕ(Y ) ∈ im(ϕ). That is, ϕ(A) is a subalgebra of B

Finally consider the morphism ψ : X + ker(ϕ) 7→ ϕ(X), ψ is well defined since

ψ(X + ker(ϕ)) = ψ(Y + ker(ϕ))⇒ ϕ(X) = ϕ(Y )⇒ ϕ(X −Y ) = 0⇒ X −Y ∈ kerϕ.

It is a morphism by the way we define the product in the quotient:

ψ([X] · [Y ]) = ψ([X ·Y ]) = ϕ(X ·Y ) = ϕ(X)×ϕ(Y )

= ψ([X])×ψ([Y ]).

Finally, it is bijective because if ψ([X]) = 0 then ϕ(X) = 0 which implies that

[X] = [0]. Moreover, for all ϕ(X) ∈ ϕ(A), ϕ(X) = ψ([X]), with [X] ∈ A/ ker(ϕ). �
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This section is a compilation of results that did not fit the main text, their proof do

not connect well with the topics at hand, but are necessary to the study.

Proposition B.0.1 (Jordan-Chevalley Decomposition) If V is a finite-dimensional
vector space over an algebraically closed field F , then every linear transformation T :

V → V satisfies:

(a) There exists unique S,N : V → V satisfying T = S +N with S semi-simple and N
nilpotent.

(b) There exist polynomials p(x) and q(x) without constant term such that S = p(T )

and N = q(T ), in particular, S and N commute with every endomorphism com-
muting with T .

(c) If A ⊂ B ⊂ V are subspaces, and T maps B into A, then S and N also map B into A.

Proof: LetΠ(x−ai)mi be the characteristic polynomial of T , then V = ⊕ker(T −aiI)mi .
By the Chinese Remainder Theorem, we can find a polynomial p(x) such that:p(x) ≡ ai (mod (x − ai)mi ),

p(x) ≡ 0 (mod x).

Now let q(x) = x − p(x) and set S = p(T ) and N = q(T ). Since they are both poly-

nomials in T , then they commute with every endomorphism commuting with T .

Furthermore if T sends B ⊃ A into A, then these also do so in accordance with (c).

To show that S is semi-simple, notice that S −aiI restricted to ker(T −aiI)mi is 0 and

therefore it acts diagonally on each of those spaces, but then it acts diagonally on V

as a direct sum. Now N is clearly nilpotent as it has no non-zero eigenvalues.

For uniqueness, since S1 +N1 = S2 +N2 = T , then S1−S2 =N2−N1. The sum of com-

muting semi-simple operators is semi-simple and the same is valid for nilpotent

operators, therefore S1 − S2 is both semi-simple and nilpotent, that is S1 − S2 = 0.

60



B. Extras

This implies that S1 = S2 and N1 =N2. �

Lemma B.0.2 If V is a vector space over an infinite field F, then a union of finitely many
proper subspaces Vi cannot equal V .

Proof: If V =
⋃n
i=1Vi , and let x ∈ V1 non-zero, since V1 is proper there exists an

y ∈ V \V1, there are infinitely many vectors of the form x + αy for α ∈ F that are

not in V1, but therefore there exists some Vi for which there are infinitely many

of these vectors, in particular there are 2 of those vectors in this Vi and therefore

(x + α1y) − (x − α2y) = (α1 − α2)y ∈ Vi ⇒ y ∈ Vi , but therefore Vi contains x, since

the choice of x was arbitrary, we find: V1 ⊆
⋃n
i=2Vi , repeating this process we find

V = Vn, a contradiction.

Note that the field has to be infinite, otherwise the pigeonhole principle does not

apply for the union of more subspaces than distinct elements of the field. �

Theorem B.0.3 If {Xi | i ∈ I} is a well-ordered basis of a Lie algebra g through ≤, the set
of monomials

{Xi1 · · ·Xik | k ∈ Z≥0 and ij ≤ ij+1 for j in 1, · · · , k − 1}

is a basis of U (g). In particular if we have a finite basis {X1, · · · ,Xn}, the monomials:

Xm1
1 Xm2

2 · · ·X
mn
n with mi ≥ 0

form a basis of U (g).

Proof: To show that these ordered monomials form a basis of U (g), we show that

any monomial m = Xi1 · · ·Xik can be written as a linear combination of elements in

the ordered set, but this can be trivially seen from the relation:

M(XiXj)N =M(XjXi + [Xj ,Xi])N for any M,N ∈U (g).

If there are m which have ij > il we can swap them and add a single element, reduc-

ing the length of the monomial and, by induction, since monomials of length 1 are

always ordered the result follows.

The biggest hurdle lies in proving linear independence, one approach to this is fil-

tering U (g) through the filtration in the tensor algebra and proving that the graded

algebra is isomorphic to the symmetric algebra [Hum72].
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The approach we are going to use is to construct an endomorphism σ on the tensor

algebra in a way that I is mapped to 0 and σ (m) = m if m is an ordered monomial.

Showing that the span of ordered monomials does not intersect I and therefore it is

linearly independent in T /I , since it is independent in T .

Fix m = Xi1 · · ·Xik any monomial. If m is ordered, set σ (m) =m. Otherwise, it is pos-

sible to find an index is such that is > is+1, setting the number of these as d(m) and

defining σ inductively on d(m).

σ (m) = σ (Xi1 · · ·Xis+1
Xis · · ·Xik ) + σ (Xi1 · · · [Xis ,Xis+1

] · · ·Xik ),

where the right-hand side is defined by induction.

Since we are defining σ only in a basis of T , we extend it naturally to an endomor-

phism. Now to finish the proof, it rests to prove that the endomorphism is null in

I and that it is well defined, that is, the above recursion does not depend on the

choice of s.

To show that it is null on I pick a general element x =M(XiXj−XjXi−[Xi ,Xj])N ∈ I .

If i = j then x = 0, if i , j assume without loss of generality that i > j, then by the

definition of σ , if it is well defined, and we get:

σ (MXjXiN ) = σ (MXiXjN ) + σ (M[Xi ,Xj]N )⇒ σ (x) = 0.

To show that σ well defined, consider the two possible cases for more than one

unordered pair on m.

1.

Xi1 · · ·XirXir+1
· · ·XisXis+1

· · ·Xik ,

with ir > ir+1 and is > is+1, we need to show that applying σ for s then r, is the

same as applying σ for r then s:

Let A = Xi1 · · ·Xir−1
, B = Xir+2

· · ·Xis−1
and C = Xis+2

· · ·Xik and Xik = Xk to simplify

notation.

σ (AXrXr+1BXsXs+1C) = σ (AXr+1XrBXs+1XsC)

+ σ (A[Xr ,Xr+1]BXs+1XsC)

+ σ (AXr+1XrB[Xs,Xs+1]C)

+ σ (A[Xr ,Xr+1]B[Xs,Xs+1]C).

Therefore σ does not depend on the choice between two indices and is well
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defined in this case.

2.

AXrXr+1Xr+2B,

with ir > ir+1 > ir+2, first calculating the permutation of ir+1 and ir we find:

σ (AXrXr+1Xr+2B) = σ (AXr+1XrXr+2B) + σ (A[Xr ,Xr+1]Xr+2B)

= σ (AXr+1Xr+2XrB) + σ (AXr+1[Xr ,Xr+2]B) + σ (A[Xr ,Xr+1]Xr+2B)

= σ (AXr+2Xr+1Xr)

+ σ (A[Xr+1,Xr+2]XrB)

+ σ (AXr+1[Xr ,Xr+2]B)

+ σ (A[Xr ,Xr+1]Xr+2B),

where the terms to permute after the first step are uniquely determined. Sim-

ilarly for the other permutation

σ (AXrXr+1Xr+2B) = σ (AXr+2Xr+1Xr)

+ σ (A[Xr+1,Xr+2]XrB)

+ σ (AXr+1[Xr ,Xr+2])

+ σ (A[Xr ,Xr+1]Xr+2B).

The difference between the two expressions, evaluated using the induction

hypothesis on the length of monomials is given by:

σ (A([Xr , [Xr+1,Xr+2]] + [Xr+1, [Xr+2,Xr]] + [Xr+2, [Xr ,Xr+1]])B),

which is equal to 0 by the Jacobi identity.

Finally it follows that the span of ordered monomials does not intersect I and

therefore they are linearly independent in U (g) � T /I .

�
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In this appendix, we give a brief construction of Lie algebras from Matrix Lie groups.

This approach can be found in [Hal04]. A more classical and general construction

can be found in [Kir08] and a more algebraic one can be found in [Kac10, lec 2].

Lie groups are manifolds with a group structure, we will focus our attention on

matrix Lie groups as they have a simpler extension to Lie algebras.

Given a field F = C or R, define GL(n;F) as the group of invertible matrices, known

as the general linear group. The metric used on GL(n;F) is the operator norm with

respect to the euclidean one:

‖A‖ = sup
‖v‖2=1

{‖Av‖2} where ‖v‖2 =
n∑
i=1

√
vi .

A sequence of matrices An = (anij) converges to A = (aij) in this norm if it converges

entry-wise anij → aij .

Definition C.0.1 A matrix Lie group G is a closed subgroup of GL(n;F), meaning that
it is a group and whenever a sequence of matrices in Am ∈ G converges to a matrix A ∈
GL(n;F), we have A ∈ G.

Example C.0.2 GL(n;F) is a matrix Lie group since it is a closed group.

Example C.0.3 Moreover, since the determinant is a continuous function, the group
SL(n;F) of matrices with determinant 1 is a matrix Lie group ({1} ⊆ R is closed).

Example C.0.4 Not every subgroup of GL(2;C) is closed, in fact, given a ∈ R/Q irra-
tional and:

G =


eit 0

0 eita


∣∣∣∣∣∣∣ t ∈ R

 .
−I is not in G because t has to be an odd multiple of π in which case ta cannot be an
odd multiple of π since a is irrational. On the other hand we can take t = (2n + 1)π for
carefully chosen integers to make ta arbitrarily close to an odd multiple of π.
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We will briefly remind some of the properties of matrix exponentials necessary to

show properties of the Lie algebra as the “logarithm” of a Lie group in some sense.

Proposition C.0.5 The exponential matrix of a complex or real X ∈Mn×n, defined as

eX = I +
∞∑
m=1

Xm

m!
,

satisfies the following properties:

(a) It is a continuous map on the corresponding matrix spaces.

(b) (eX)∗ = eX
∗
.

(c) If XY = YX then eX+Y = eXeY . As a consequence, eX is invertible with inverse e−X

since e0 = I .

(d) If C is any invertible matrix, then eCXC
−1

= CeXC−1.

(e) ‖eX‖ ≤ e‖X‖.

(f) d
dt e

tX = XetX .

(g) (Lie’s Product Formula) eX+Y = lim
m→∞

(e
X
m e

Y
m )m.

Proof:

(a) The sum is well defined, given that the norm converges:

∞∑
m=1

∥∥∥∥∥Xmm!

∥∥∥∥∥ =
∞∑
m=1

‖Xm‖
m!
≤
∞∑
m=1

‖X‖m

m!
= e‖X‖ − 1. (C.1)

Now given X,Y ∈Mn×n it follows that (abusing notation as to say 00
n×n = I):

‖eX+Y − eX‖ =

∥∥∥∥∥∥∥∑m≥0

(X +Y )m −Xm

m!

∥∥∥∥∥∥∥
≤

∑
m≥0

(‖X‖+ ‖Y ‖)m − ‖X‖m

m!

= e‖X‖+‖Y ‖ − e‖X‖

= e‖X‖(e‖Y ‖ − 1) ≤ ‖Y ‖e‖X‖e‖Y ‖.

Continuity follows directly by choosing Y in the neighborhood of a chosen X.
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(b) Follows directly from (Xm)∗ = (X∗)m and continuity of the transpose operator.

(c) As X and Y commute, then (X+Y )m =
∑∞
k=0

(n
k

)
XkYm−k now since the exponen-

tial converges in absolute value:

eXeY =
∞∑
m=0

m∑
k=0

Xk

k!
Ym−k

(m− k)!
=
∞∑
m=0

1
m!

m∑
k=0

(
n
k

)
XkYm−k =

∞∑
m=0

(X +Y )m

m!
= eX+Y .

(d)

eCXC
−1

=
∞∑
m=0

(CXC−1)m

m!
=
∞∑
m=0

CXmC−1

m!
= CeXC−1.

(e) The same result presented in (1.1).

(f) Again we differentiate term by term since the power series converges uni-

formly.
d
dt
etX =

d
dt

1 +
∞∑
m=1

d
dt

(tX)m

m!
=

∑
m≥1

tm−1Xm

(m− 1)!
= XetX .

(g) Define A = e(X+Y )/k and B = eX/keY /k, then by the norm inequality from (1.1)

and the triangle inequality imply:

‖A‖,‖B‖ ≤ (e‖A‖+‖B‖)1/k .

On the other hand, reordering terms for B in terms of the power of k by abso-

lute convergence of the exponential:

B =
∞∑
i=0

(X/k)i

i!
·
∞∑
j=0

(Y /k)j

j!
=
∞∑
m=0

k−m
m∑
i=0

Ai

i!
· B

m−i

(m− i)!
.
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Which allows us to bound the norm of the difference by:

‖A−B‖ =

∥∥∥∥∥∥∥∥
∞∑
i=0

([A+B]/k)i

i!
−
∞∑
m=0

k−m
m∑
j=0

Ai

i!
Bm−i

(m− i)!

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
∞∑
i=2

k−i
(A+B)i

i!
−
∞∑
m=2

k−m
m∑
j=0

Ai

i!
Bm−i

(m− i)!

∥∥∥∥∥∥∥∥
≤ 1
k2

e‖A‖+‖B‖ +
∞∑
m=2

1
m!

m∑
i=0

m
i
‖Ai‖‖Bm−i‖


=

1
k2

e‖A‖+‖B‖ +
∞∑
m=2

(‖A‖+ ‖B‖)m

m!


≤ 2
k2 e
‖A‖+‖B‖.

�

Now we are ready to define and prove some properties of the Lie algebra of these

matrix Lie groups.

Definition C.0.6 Given a matrix Lie Group G ⊂Mn×n(F), its Lie algebra is the set g =

{X ∈Mn×n(F) | etX ∈ G for all t ∈ R}.

Considering this set instead of the Lie group itself is very useful as they have very

nice algebraic properties and an underlying structure that is quite rich and unique.

One of the nicest properties this set possesses is that it is a vector subspace of Mn×n

and is closed under a special commutator operator, in fact:

Proposition C.0.7 Given any two elements X,Y in a Lie algebra g of a Lie matrix group
G, then:

(a) sX ∈ g for all s ∈ R,

(b) X +Y ∈ g,

(c) XY −YX ∈ g.

Proof:

(a) et(sX) = e(ts)X ∈ G for all t since ts ∈ R

(b) We will use Lie’s product formula (Proposition C.0.5g): et(X+Y ) = limm→∞(etX/metY /m)m,

sinceG is a group then (etX/metY /m)m is inG for allm ∈ N and since it converges,

by definition its limit is in the matrix Lie group G, proving that X +Y ∈ g.

67



C. Lie Algebras from Matrix Lie Groups

(c) Since g is a vector subspace of GL(n;F), it is a closed set.

Since etX ∈ G is invertible and Y ∈ g, Proposition C.0.5(d) implies that

ee
tXY e−tX = etXeY e−tX ∈ G

which by definition means etXY e−tX ∈ g. Therefore

etXY e−tX −Y
t

∈ g for all t.

But g is closed:

lim
t→0

etXY e−tX −Y
t

∈ g

lim
t→0

etXY e−tX −Y
t

=
d
dt
etXY e−tX

∣∣∣
t=0

= (XetXY e−tX + etXY (−X)e−tX)|t=0

= XY −YX ∈ g

�
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